Student Conference Proceedings

Proceedings Article

Implementation and Evaluation of a
Prototypical Service for the Processing and
Provision of Clinical Trend Data in a
Distributed System

Isticahayanittamiarzahraa“*- Raika Rauterberg”- Johannes Kollien”- Max Urban

Student of Biomedical Engineering, Luebeck University of Applied Sciences, Liibeck, Germany
Draegerwerk AG & Co. KGaA, Liibeck, Germany

Technische Hochschule Liibeck, Liibeck, Germany

Corresponding author, email:

Received 13 March 2025; Accepted 23 June 2025; Published online 18 July 2025

(© 2025 Isticahayanittamiarzahraa et al.; licensee Infinite Science Publishing

This is an Open Access article distributed under the terms of the Creative Commons Attribution License
(http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in
any medium, provided the original work is properly cited.

Abstract

The ISO/IEEE 11073-SDC standard defines architecture and protocol on interoperability between manufacturer-
independent medical devices. In this paper, a prototype implemented this standard to process clinical trend data
using Apache Kafka for data storage and GraphQL for its interface. The proposed prototype demonstrated real-time
and historical data connected to hundred simulated devices. In the evaluation, the processing time of trend during
high-load setting has occasional outliers, but its median is relatively low. A single historical trend query with varied
payload and real-time subscriptions were effectively executed, meanwhile simultaneous queries from multiple
devices caused high latency due to resource contention.

. Introduction or therapy [1],[2]. The prerequisite for this is a consistent

representation of the provided clinical data throughout

IT infrastructures in modern hospitals have multiple
different systems and restrictions on the interfaces as
well (e.g., unidirectional communication between med-
ical devices). Furthermore, each device generates and
utilizes its own physiological data to present it to the
caregivers based on individual interpretation and pro-
cessing, which results in inconsistent and unharmo-
nized data presentations. The ISO/IEEE 11073-SDC
(Service-oriented Device Connectivity) standard enables
secure, vendor-independent interoperability and device-
to-device communication in medical products, adding
clinical value in high-acuity care settings. This standard
ensures standardized storage and access mechanisms to
physiological patient data, which can be used by appli-
cations that provide improved data views for diagnosis

the entire system. In addition to real-time physiological
patient data, historical clinical trend data are especially
required to provide comprehensive workflow support
for clinical staff. Customer needs consistent historical
data visualizations while reducing the implementation
efforts in the system components. Therefore, a central-
ized calculation of clinical trend data and its provision
via a clearly defined interface is required.

(© 2025 Infinite Science Publishing


mailto:i.isticahayanittamiarzahraa@stud.th-luebeck.de; max.urban@th-luebeck.de 
https://dx.doi.org/10.18416/SCP.2025.1994
https://dx.doi.org/10.18416/SCP.2025.1994

Student Conference Proceedings

Il. Materials and Methods

I1.1. System Architecture

By using the principles of the SDC protocol in the sys-
tem, seamless data transfer between medical devices
is possible. The communication protocol of SDC Stan-
dard is specified in Basic Integrated Clinical Environment
Protocol Specification (BICEPS). It defines the domain
information and service model of the medical device. In-
side BICEPS there is Medical Device Information Base
(MDIB), containing an entity-relationship based model
for managing medical objects such as patient data, de-
vice configurations and remote operations, mapped to
an XML format. In the software architecture (Fig. 1),
the Data Aggregator receives and collects BICEPS data
from medical devices via SDC connection. It then en-
crypts and stores the data in an Apache Kafka cluster
(from now on called "Kafka"), which allows integration
of stream processing and persistent logging [3]. There
is a built-in Java library in the Data Aggregator, which
can detect connected devices and retrieve their MDIB
data, creating a clone of the medical device. By accessing
this data, the prototype then extracts specific measure-
ment to calculate latest clinical trend data (from now on
called "trend") based on domain specific requirements.
Through an interface implemented in GraphQL, the pro-
cessed data can be integrated and streamed live. Using
a client application, the end users can interact with the
system, displaying clinically relevant data. Nevertheless,
these data can also be utilized by other services without
an UI (e.g., report generator or user applications).

Patient
Backend
Medical Data Kafka
Device " |Aggregator Cluster §8

Client
Application

Trend Generator
(Prototype)

&

GraphQL

Connection Lines
SDC Connection
Internal Backend Connection

HTTP/Websocket Connection
GUI

2:8

Consumer

Figure 1: Architecture of the clinical trend data processing
prototype with SDC protocol

I1.11. Data Acquisition

The MDIB was provided by a patient monitor model,

that monitors vital signs (e.g., heart rate, oxygen satura-

tion, and other physiological parameters) in acute care
with a sending rate of 0.5s. All backend components

(Data Aggregator, Kafka Cluster and Trend Generator)
were deployed on a virtual machine Linux 24.04.1 LTS.
The machine was equipped with 24 CPUs (QEMU Virtual
CPU version 2.5+ @ 2.0GHz), 32 GB of memory, and 246
GB of storage. The services were running for seven days
straight with hundred simulated devices connected to
the service, hundred measurements were transmitted to
each device. This demonstrates the system’s ability to
manage high data throughput.

I1.11I. Trend Processing

Through a digital cloned device that is provided by the
Javalibrary, the Trend Generator accesses all reports from
BICEPS to store and retrieve data. From these reports, rel-
evant trend information is extracted from the BICEPS to
monitor and analyze trend. This includes metrics, which
are abstract objects in an MDIB that contain measure-
ment, settings, states and contextual information of a
medical device [1],/2],/4]. The MDIB database is struc-
tured into two components: the descriptive part, defines
typically static attributes that include structure of device,
services, metrics and coded values which describe the
transmitted data; and the state part, which contains real-
time dynamic information such as measurement values,
corresponding to the objects in descriptive part [1]-

To extract this database, firstly state objects were de-
rived in the MDIB of a dedicated device that has funda-
mental metadata and are explicitly identified by a handle
(without assigning any semantic). For trend extraction,
the focus was only on the data measurement, including
numeric metrics (e.g., metric value and determination
time). Trends are created as entries in a map with the
handle of the descriptor as the key and complete mea-
surement state as the value. This allows retrieval of all
relevant physiological measurements and their associ-
ated descriptive objects (e.g., unit of measure, code, con-
cept description) [4]. Trend sampling occurs within every
certain selected time by the prototype and sends it to a
Kafka topic as a storage, which contains device-specific
information (Fig. 2). If there is a trend update coming
from the same device, it will be appended to the partition
of the topic in chronological order. Each update has an
incremental offset and also a timestamp, which indicates
when the trend was stored. To access historical trends,
Kafka was configured to retain data for up to 14 days

~

Timestamp )
2025-01-01T07:00:00Z
2025-01-01T07:00:00Z
2025-01-01T07:00:15Z

Offset Key
1 handle1l
2 handle2
B} handlel

Value
(35, BodyTemp]
[64, Sp02]
[36, BodyTemp]

\\ medical-device-123_0 partition J

Figure 2: Demonstration of partitioned trend in Kafka topic

(© 2025 Infinite Science Publishing


https://dx.doi.org/10.18416/SCP.2025.1994
https://dx.doi.org/10.18416/SCP.2025.1994

Student Conference Proceedings

I1.IV. Data Provision using GraphQL

In comparison to traditional APIs, GraphQL is able to
provide specific data that clients need, which improves
efficiency and also flexibility in data retrieval. GraphQL is
integrated into the prototype to interact with and display
trend data to a client. GraphQL only uses a single end-
point URL to manage the operations, such as query and
subscription [5]. The historical trends can be retrieved
by having a query operation. The operation accesses the
relevant Kafka topic within the backend. To consume
a specified record, its topic, partition, and offset must
be known already at the beginning. Because Kafka sup-
ports time-based queries by timestamp, a client is able
to return the measurement value closest to the specified
timestamp retrieved, representing the trend value for
that timespan [3]. Operating a subscription allows real-
time trend streaming. The Trend Generator access up-
dates directly from the device replica during the stream-
ing instead of Kafka to avoid possible latency and also
interruption during trend storage.

I1.V. Client Application

In order to connect with the GraphQL server side to re-
trieve historical data or subscribe to real-time updates,
GraphQL-Python-library "gql" was deployed to build a
client application. This library supports HTTP and Web-
Socket transports for flexible data retrieval and subscrip-
tion [6]. For query operations, such as historical trend
retrieval, using HTTP is appropriate for synchronous re-
quests where data is returned in response to a single
query. A real-time trend subscription is managed via
WebSocket transport, providing a single persistent real-
time two-way communication protocol over TCP. Both
operations get their responses in a JSON format (Fig. 3).
A client can have multiple requests on GraphQL by using
async transports. This allow simultaneous subscriptions
and queries on multiple devices without any interruption
on the system

JSON Response

value 1
timestamp )

)

Figure 3: Example of a GraphQL query structure and its re-
sponse in JSON data format

I1l. Results and Discussion

The performance of prototype was evaluated considering
the processing time from trend emission by the medi-
cal device to its storage in Kafka and the response time

from a client request to trend retrieval on a client. Fig.
shows trend storage to Kafka and trend processing were
efficient with minimal variability. The initial creation of
a cloned device, involving access to and transmission of
MDIB, accounted for most of the processing time out of
all services. Its median is around 300 ms with occasional
outliers exceeding 800 ms. These outliers occurred dur-
ing the initial setup, when 100 new devices were detected
and trend topic was created in Kafka for each device.
With a median of 300 ms on a response time for overall
service, this indicates a fast trend processing which is
under half a second.

800

8
8

Time [ms]
5
]

-

e Trend MDIB Transmission
Storage Processin 9 Delay

0 L 4:;

Total Time

Figure 4: Time measurement of each service on prototype

For historical trend retrieval (Fig. 5 and 6), the re-
sponse time can be important for the caregiver in the
hospital to monitor a patient. The shorter the wait time
to retrieve all needed trend of a patient, the better. Each
query is measured 100 times per mutation on their re-
sponse time to ensure reliability and exclude outliers. As
shown in Fig. 5, median response times increase with a

601 Duration (min)
120 o

== 2880
50{ mm 8640

Figure 5: Response times of historical trend queries for mul-
tiple metrics from a single medical device (interval sampling
time = 30s)

higher number of metrics and longer durations. For 100
metrics over 8640 minutes, some outliers are below Q1,
which indicate occasional faster response times under
heavy load. In contrast, Fig. 6 shows larger increases
in response times with many outliers when multiple de-
vices run simultaneously, even with reduced payload
(one metric). It became more challenging as more de-
vices requested data for longer duration at the same time.
50 devices do have lots of outliers when the duration is

(© 2025 Infinite Science Publishing


https://dx.doi.org/10.18416/SCP.2025.1994
https://dx.doi.org/10.18416/SCP.2025.1994

Student Conference Proceedings

Duration (min)

=3 240
= 480

®om 0o 0 ®o

Response Time [s]

Number of Devices

Figure 6: Response times of historical trend queries for one
metric from multiple medical device in parallel (interval sam-
pling time = 30s)

480 minutes with the maximal value of less than 40 sec-
onds. In comparison, 100 devices over 480 minutes could
exceed more than 100 seconds to retrieve trend, which is
two times the maximal value on 50 devices. This suggests
that simultaneously requesting data could disrupt the
process of the prototype on storing trend data to Kafka
during retrieval and cause delays. Using asynchronous
functions for trend retrieval and storing in Kafka could
help achieve a non-blocking application, so each service
on retrieval and storing could be run without waiting
for each service to end. To simulate multiple devices
subscribing to trend simultaneously, up to 100 devices
were connected to the Trend Generator in parallel for 5
hours. Fig. 7 shows overall low median response times as
device subscriptions increase, which is less than 10 ms,
as it streams trends directly from the device replica, not
through Kafka. Nevertheless, outliers grow with higher
device counts due to resource competition with a maxi-
mum value ofless than 50 ms. However, the limitation on
how many devices that can be subscribed to in parallel
needs further investigation.

®o@o o
oooo®

Response Time [ms]

o ==

50
Number of Devices

Figure 7: Response times for 5 hours duration of subscription
on multiple devices in parallel

IV. Conclusion

The prototype shows an efficient performance on clinical
trend data processing and retrieval in a distributed sys-
tem. A single query of historical trend retrieval demon-

strated gradually increasing response times as the pay-
load gets higher. Even when there were up to 100 devices
subscribed to the real-time trend, the response times on
subscription had a low median overall, which was less
than 50 ms. In contrast, as multiple devices, particularly
100 devices, request historical trends at the same time,
the prototype resulted in challenges on the response
times with delays and increased outliers. This is due
to the system’s resources being shared by multiple de-
vices at once. In the future, applying asynchronous on re-
trieving historical trends can help manage simultaneous
requests. Therefore, the prototype could deliver reliable
clinical trend data in a demanding clinical setting.

Acknowledgments

The work has been carried out at Dragerwerk AG & Co.
KGaA, Moislinger Allee 53, 23558 Liibeck and was super-
vised by the Department of Applied Sciences, Technische
Hochschule Liibeck.

Author’s statement

Conflict of interest: Authors state no conflict of interest.

References

[1] M. B. et al., Using data distribution service for ieee 11073-10207
medical device communication, in Wireless Mobile Communica-
tion and Healthcare: 6th EAI International Conference, MobiHealth
2016, Milan, Italy, November 14-16, 2016, Revised Selected Papers,
ser. Lecture Notes of the Institute for Computer Sciences, Social
Informatics and Telecommunications Engineering, 320, Cham:
Springer, 2020, 127-139. doi:

[2] D. G. et al,, An approach to integrate distributed systems of
medical devices in high acuity environments, in 5th Work-
shop on Medical Cyber-Physical Systems, V. T. et al., Ed.,
ser. Open Access Series in Informatics (OASIcs), 36, Dagstuhl, Ger-
many: Schloss Dagstuhl — Leibniz-Zentrum fiir Informatik, 2014.
doi:

[3] G.W.etal., Consistency and completeness Rethinking distributed

stream processing in apache kafka, in Proceedings of the 2021 In-

ternational Conference on Management of Data, ser. SIGMOD '21,

2602-2613, New York, NY, USA: Association for Computing Machin-

ery, 2021. doi:

ISO/IEC/IEEE. Health informatics — Point-of-care medical de-

vice communication Part 10207: Domain Information and Ser-

vice Model for Service-Oriented Point-of-Care Medical Device

Communication. ISO/IEEE 11073-10207:2019(E), pp. 1-24, 2019,

doi:

M. Bryant, Graphq]l for archival metadata An overview of the ehri

graphql api, in 2017 IEEE International Conference on Big Data (Big

Data), 2225-2230, 2017. doi: .

[6] G. Python, Graphql documentation,

[4

[5

, Accessed:
2025-01-20, © Copyright 2020, graphql-python.org, 2020.

[7] G. Foundation. (2025). Graphql: A query language for your api.
Accessed: 2025-01-20, URL:

(© 2025 Infinite Science Publishing


https://dx.doi.org/10.1007/978-3-030-49289-2_10
https://dx.doi.org/10.4230/OASIcs.MCPS.2014.15
https://dx.doi.org/10.1145/3448016.3457556
https://dx.doi.org/10.1109/IEEESTD.2019.8675788
https://dx.doi.org/10.1109/BigData.2017.8258173
https://gql.readthedocs.io/en/stable/index.html
https://gql.readthedocs.io/en/stable/index.html
https://graphql.org/learn/
https://dx.doi.org/10.18416/SCP.2025.1994
https://dx.doi.org/10.18416/SCP.2025.1994

	Introduction
	Materials and Methods
	System Architecture
	Data Acquisition
	Trend Processing
	Data Provision using GraphQL
	Client Application

	Results and Discussion
	Conclusion

