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Abstract

Path planning is a fundamental challenge in medical robotics, demanding precision and safety in complex environ-
ments. This paper reviews traditional and Al-based path planning approaches, focusing on their applicability in
medical settings. A simulation-based experimental framework was developed, incorporating a UR5e robotic arm
and NVIDIA Isaac Sim. To assess the framework’s capabilities, a path planning experiment was conducted compar-
ing the RRT algorithm and the cuRobo motion planner by NVIDIA, with cuRobo achieving a 35.6 % improvement
over the RRT algorithm. While the experiment was limited to a reduced scenario, the results illustrate the potential
of the setup to evaluate key metrics such as computational efficiency, safety margins, and path optimality. The
study highlights the strengths of the experimental framework and its components as a foundation for future, more
complex investigations into path planning in medical environments.

. Introduction

Path planning in medical robotics requires high precision
and adaptability in dynamic environments. The com-
plexity of human anatomy, factors like tissue deforma-
tion or organ movement, often result in a cluttered envi-
ronment, making it especially challenging. With medical
robotics becoming increasingly integrated into clinical
settings, developing efficient path planning strategies
is crucial for enhancing surgical precision and reducing
patient risks [1]. Traditional methods often struggle in
such dynamic settings, while Al-based approaches offer
promising solutions through learning and adaptation
However, their real-time safety and reliability remain un-
derexplored. This paper reviews common path planning
methods, both traditional and Al-based, and presents
an experimental simulation framework to assess their
performance for real-world medical applications.

Il. Methods and materials

Path planning involves determining a feasible trajectory
from a start to a goal pose of a robot’s end effector while
avoiding obstacles. The concept of configuration space
is central, describing all possible robot states, which in
turn are represented by a vector g € R” of joint angle
values for a robot with »n joints. This section reviews
key path planning approaches in robotics, focusing on
both traditional and Al-based methods, and introduces
an experimental simulation framework used for their
evaluation.

Il.I. Traditional Path Planning

Traditional path planning methods have been widely
used in robotic path planning. This section provides
an overview of two key approaches.
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I1.1.1. Rapidly-exploring Random Tree (RRT)

The RRT algorithm is a path planning algorithm that uti-
lizes a random sampling technique to explore the con-
figuration space of a robot. The algorithm incrementally
constructs a tree from the initial configuration, expand-
ing towards the goal until either the target is reached or
a predefined exploration threshold is met

As shown in Fig. 1 the algorithm proceeds as follows:
The process begins by selecting the initial configuration,
Gstarv> and then a random configuration, ¢,,,q, is sampled
from the configuration space. The nearest tree node,
Gnear, 18 identified, and a new node, ¢y, is generated
along the path from ¢,¢a; t0 Grang Using a fixed step size 0.
If gew does not result in a collision, it is added to the tree.
The distance between ¢y, and gy is then evaluated.
If gpew lies within the defined domain, surrounding the
goal, a valid path from the start to the goal is obtained. If
not, the procedure is repeated until the goal is reached
or the maximum number of samples is exceeded
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Figure 1: The RRT expansion method. The RRT algorithm
incrementally builds a tree by sampling random configura-
tions and extending towards the goal configuration. Adapted
from

11.1.2. Velocity Potential Field (VPF)

The optimization-based VPF-algorithm represents the
robot’s environment using attractive and repulsive po-
tential fields. The target is modeled as an attractive po-
tential, which generates a velocity that moves the robot’s
end effector toward the goal. Obstacles are modeled as
repulsive potentials, which generate velocities that push
the robot away [ 1]. The attractive potential U, is given
by:

1)

where g is the current configuration of the robot, p, is
the Cartesian distance between the end effector and the
target, and ¢ is the attractive potential gain. The repulsive
potential U, is defined as:

1
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where pj, is the minimum distance between the robot
and the obstacle, p, the threshold beyond which no re-

pulsive force is applied and k the repulsive potential
gain [1]. The attractive and repulsive velocity, induced
by the potential fields are then determined by taking the
negative gradients of the potentials and converted from
Cartesian to joint space using the robot’s Jacobian after-
wards

I1.1l. Al-Based Path Planning

Unlike traditional methods, Al-based path planning ap-
proaches leverage machine learning to enable robots to
adapt to complex, dynamic environments and improve
their decision-making capabilities over time. Two exem-
plary approaches are presented in this section.

I1.11.1. Q-Learning (QL)

Q-learning, as proposed in 2], is a model-free reinforce-
ment learning algorithm, where an agent (e.g., a robot
arm) learns an optimal policy by interacting with its en-
vironment. The first step in the QL process involves dis-
cretizing the robot’s configuration space, based on a pre-
defined angular resolution of the robot’s joints. The robot
can then perform actions, which include rotating each
joint, or keeping it stationary. The agent receives a re-
ward or penalty based on the consequences of its actions.
Rewards are assigned for progressing toward the goal,
while penalties are given for undesirable outcomes, such
as collisions with obstacles or unsafe movements

The Q-learning algorithm focuses on iteratively refin-
ing the action-value function, represented by Q-values,
which estimate the expected future reward for taking a
particular action in a given state. During training, the
Q-values are updated by iteratively adjusting the value
of a state-action pair based on the observed reward and
the maximum expected future reward

Through this iterative learning process, the robot
gradually improves its decision-making ability, converg-
ing towards an optimal policy that minimizes the risk of
collisions and efficiently guides the robot arm towards
the target. Q-learning allows the robot to adapt to dy-
namic environments by continually refining its policy
based on feedback from the environment

11.11.2. NVIDIA cuRobo

The cuRobo motion planner by NVIDIA utilizes numer-
ous advanced Al-based methods. A central aspect of
its approach is the use of a GPU-enhanced optimiza-
tion method, designed to evaluate multiple solutions in
parallel. By incorporating a parallel noisy line search,
it quickly assesses and selects effective step directions,
significantly accelerating the convergence process for
complex planning tasks [4]. To further enhance the op-
timization, cuRobo combines gradient-based methods
with particle-based optimization. This hybrid strategy

(© 2025 Infinite Science Publishing


https://dx.doi.org/10.18416/SCP.2025.1968
https://dx.doi.org/10.18416/SCP.2025.1968

Student Conference Proceedings

starts by sampling multiple trajectory candidates, refin-
ing them using a weighted evaluation of costs, and transi-
tioning to gradient-based optimization for precise local
improvements. This ensures thorough exploration of the
solution space and leads to robust outcomes [4]. Another
innovation lies in a differentiable framework for continu-
ous collision checking, which uses signed distance calcu-
lations to measure proximity to obstacles and compute
optimization gradients. This method integrates seam-
lessly with different environment models, such as geo-
metric shapes, mesh-based representations, and voxel
grids. These Al-driven techniques enable cuRobo to
achieve efficient, high-speed motion planning while ad-
dressing complex constraints

I1.1Il. Experimental Evaluation
Framework

In this section an experimental evaluation framework
for analyzing and comparing the performance and appli-
cability of path planning approaches, like the examples
presented earlier, is introduced.

I1.111.1. UR5e Robot Arm

The UR5e robot arm, manufactured by Universal Robots,
is a 6-DOF articulated manipulator designed for a range
of precise tasks. It features a working radius of 850 mm
and a maximum payload capacity of 5kg. The arm of-
fers high repeatability of &+ 0.03 mm, which is crucial for
applications requiring fine control, such as medical pro-
cedures. With a maximum speed of 1 ¥ and integrated
torque sensing, the UR5e is capable of dynamic and re-
sponsive movements. Its compact and lightweight de-
sign allows for seamless integration into various medical
environments

I1.111.2. NVIDIA Isaac Sim

NVIDIA Isaac Sim is a comprehensive simulation plat-
form that provides realistic physics simulations, enabling
precise interaction between robots and collision objects.
The platform supports dynamic obstacle detection and
real-time feedback, making it ideal for evaluating path
planning algorithms in complex environments. Addition-
ally, Isaac Sim integrates sensor simulations like depth
cameras and lidar to enhance collision detection accu-
racy

I1l. Results and discussion

In this section the results of an exemplary path planning
experiment using both the basic RRT algorithm and the
cuRobo motion planner explained above are presented
and discussed using an evaluation metric.

Figure 2: Path Planning Experiment. The RRT algorithm is
used to determine a valid path to move the robot’s end effector
from the initial pose (right) to the goal pose (left). The calcu-
lated path is visualized by the transparent robot configurations
in between.

l11.1. Path Planning Experiment

The experimental evaluation framework, implemented
using ROS2 and Movelt2, is used to conduct an exem-
plary simulated path planning experiment utilizing the
RRT algorithm from the Open Motion Planning Library
and the cuRobo motion planner, both in their default
configurations. The robot model, consisting of the UR5e
robot itself and a depth camera attached to it as an end ef-
fector, is supposed to execute a movement from a given
initial pose to a goal pose while making sure that col-
lisions with both a modeled bottom plate and a basic
collision object which is visualized as a red box in Fig.
are prevented. Both poses of the robot’s end effector are
defined relative to the world coordinate system, placed
at the coordinate origin, and as a tuple of seven elements
(X,Y,2,9x,9y,92Gw), where the first three describe the
position in meters and the last four are part of a quater-
nion, used to represent the orientation. The initial pose
is defined as (0.40,0.92,1.27,-0.04, 0.63, 0.04, 0.78) and
the goal pose as (0.40,0.12,1.27,-0.04, 0.63,0.04,0.78).
The robot’s base coordinate system is placed at
0.2,0.5,1,0,0,-0.71,0.71).

I1.11. Evaluation Metric

For evaluating the performance of path planning tech-
niques in a dynamic medical environment a weighted
sum of the following three key parameters can be con-
sidered:

* Real-Time Responsiveness (R): Time required for
the algorithm to plan the robot’s path. Faster plan-
ning results in a better score, crucial for real-time
medical applications.

» Safety Margin (S): The distance maintained be-
tween the robot and obstacles. Larger safety mar-
gins are essential for preventing collisions and en-
suring patient safety.
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¢ Path Optimality (O): The efficiency of the path in
terms of absolute joint motion. Paths with less ab-
solute joint motion are preferred, minimizing robot
motion and maximizing efficiency.

A path the planner needs more than R = 2s to calcu-
late is assumed to be not applicable for a medical appli-
cation. The robot should also keep a safety margin of
$ =0.01m at all points of the calculated path. For the
absolute joint motion one full rotation for each of the
six joints is considered to be the worst-case. This would
result in O = 37.7rad. If the calculated path leads to a
violation of these limits, it is assumed to be invalid. For
a valid path the overall metric M can be calculated as:

A

M R+ S+ (0]
= uH) =< wy — w3 —,
IR 2 SO

S 3)

where w;, w,, wy are the weights for each parameter,
which are all set to 3. A score closer to zero indicates
better performance in the context of medical robot navi-
gation. Table 1 shows the resulting values for the plan-
ning time (R), the safety margin (S), the absolute joint
motion (O) and the overall evaluation metric (M) for con-
ducting the described path planning experiment both
with the RRT planning alogrithm and the cuRobo motion
planner.

Table 1: Path planning results

Planner R S (0] M
RRT 0.17s 0.067m 13.13rad 0.194
cuRobo 0.12s 0.067m 8.23rad 0.125

For both planners the minimal distance between the
robot and the considered collision objects is 0.067 m and
reached in the initial configuration. It is not undercut at
any other point of the path. In terms of the remaining pa-
rameters, planning time and absolute joint motion, the
cuRobo motion planner outperforms the RRT planner
which also results in a better score M.

IV. Conclusion

This study has reviewed both traditional and Al-based
path planning methods in the context of medical
robotics. Traditional approaches such as RRT and VPF
offer robust frameworks for structured environments but
often lack adaptability to dynamic and complex medical
scenarios. In contrast, Al-based methods, such as Q-
Learning and the cuRobo motion planner, demonstrate
significant potential for real-time responsiveness and
optimization in such environments, although challenges
related to their integration, robustness, and reliability
in dynamic medical scenarios, beyond the scope of the
simulation framework, should not be overlooked.

The experimental results underscore the importance
of evaluating path planning algorithms against real-
world constraints like safety margins, computational ef-
ficiency, and path optimality. The proposed metric pro-
vides a structured way to assess these methods and com-
pare their applicability for medical environments, with
the cuRobo motion planner showing a 35.6 % improve-
ment over the RRT algorithm. It outperformed RRT in
terms of both planning time and path optimality, demon-
strating its potential for faster and more efficient mo-
tion planning in medical applications. Considering ad-
ditional parameters, such as robustness to uncertainty,
which ensures reliable performance under sensor noise,
and adaptability to dynamic obstacles, which evaluates
navigation around moving obstacles, would further im-
prove the proposed evaluation metric, making the results
more robust and meaningful for medical applications.

Future work should also focus on integrating multi-
modal sensor data and refining AI models to improve
adaptability and precision. These advancements will
bridge the gap between simulation and clinical use, en-
abling the evaluation of these models on real-world sys-
tems and ensuring the development of safer and more
efficient robotic systems in healthcare.
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