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Abstract
Medical image segmentation can profit from the integration of contextual information provided by anomaly
detection methods. This work investigates different strategies for using anomaly detection results as guidance
in supervised segmentation of pathological retinal scans. Three state-of-the-art anomaly detection algorithms,
differing in architecture, training methods, and original use cases, are evaluated in five guidance strategies, including
an Attention-MobileNet architecture. The best-performing approach achieves an improvement of 6.7% in the
detection rate score compared to the baseline. This framework offers an enhanced tool for automated analysis of
retinal scans, supporting earlier diagnosis and improved treatment planning.

I. Introduction

Optical Coherence Tomography (OCT) has become a
standard imaging technique for diagnosing and monitor-
ing retinal diseases. It is a non-invasive imaging technol-
ogy that captures high-resolution images of biological
tissues, such as the retina or skin [1]. For patients suffer-
ing from progressive retinal diseases, fluid accumulation
within the retina is a critical marker that requires accu-
rate volumetric segmentations for reliable analysis [2].
However, manual fluid delineation is time-consuming
and prone to inter-rater variability. Therefore, there is a
need for automated segmentation frameworks.

In recent years, deep learning techniques, particularly
Convolutional Neural Networks (CNNs), have revolution-
ized the field of medical image analysis. CNNs, due to
their ability to learn features from raw image data, have
shown significant success in tasks such as image classifi-
cation, object detection, and segmentation. Among the
various CNN architectures, lightweight models like Mo-
bileNet [3] have gained attention due to their efficiency

in balancing performance and computational cost. In
this work, we employ MobileNet as the baseline model
for segmenting retinal fluids. However, as shown in the
work of Seeböck et al. [4], contextual information, such as
anomaly detection scores, can improve the performance
of the segmentation model.

Therefore, this work evaluates several novel strategies
to incorporate anomaly detection results into supervised
segmentation models. We show that anomaly guidance
can enhance the ability of segmentation models to de-
tect subtle and complex fluid patterns, leading to more
accurate and consistent segmentation results.

II. Materials and Methods

To investigate the role of anomaly detection in supervised
segmentation, this section outlines the datasets used and
the methodologies developed for pathological retinal
OCT segmentation and anomaly guidance.
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Figure 1: Structure of Attention-MobileNet based on Mo-
bileNet [3]. Gray coloured parts are from the original MobileNet,
while blue highlighted parts refer to extended components
from the Attention U-Net [5]. The AG blocks correspond to the
Attention Gates of [5]. For better overview, some labels of the
MobileNet are omitted.

II.I. Datasets
To encompass a wide range of biomarker representations,
three datasets featuring different retinal diseases but sim-
ilar fluid types are combined. These datasets contain
multiple OCT volumes acquired with a Spectralis OCT
scanner, as well as expert segmentations of the retina
and pathological fluids. The resulting dataset includes
data from a non-public age-related macular degener-
ation (AMD) study, a non-public longitudinal chronic
serous chorioretinopathy (CSCR) study and the publicly
available RETOUCH [2] challenge, comprising a total of
204 pathological OCT volumes.

In particular, there are 39 volumes with intraretinal
fluid (IRF), 135 volumes with subretinal fluid (SRF), and
141 volumes with pigment epithelium detachment (PED).
Since the number of B-scans is more crucial than the
number of volumes, the methods presented in this paper
operate on individual 2D slices (B-scans) rather than on
entire 3D volumes. A total of 7023 B-scans are available,
with 2098 pathological, 370 IRF, 1245 SRF, and 1073 PED
B-scans, respectively. Due to the under-representation of
the fluid classes, non-pathological B-scans are excluded
from the model’s statistics and evaluation.

The RETOUCH dataset is limited to the Spectralis
OCT scans and has been extended with retinal labels.
For the longitudinal CSCR dataset, different numbers
of volumes are given for each patient. Therefore, a five-
fold cross-validation is used in an approximately 80:20
split between the training and test folds. To ensure a
balanced distribution of fluid types in training and test
sets, the relative pixel counts of each class are taken into
consideration. To standardize image sizes, larger images
were cropped to a common resolution of 496×512 pixels.
Preprocessing steps included flattening the images along
the Bruch’s membrane, followed by data augmentation
through random scaling and translation.

II.II. Architectures
For fast and efficient predictions, MobileNetV3 [3] is used
as a baseline model. The model is trained for 40 epochs

using Adam optimization with an initial learning rate
of 1e−4. To enhance generalization, exponential learn-
ing rate decay is applied every tenth epoch with a gamma
of 0.9, and Stochastic Weight Averaging is employed with
an additional learning rate of 1e−2. The baseline loss
function combines cross-entropy and Dice Similarity Co-
efficient (DSC) loss across all five classes, including the
background class and retina label. This serves as the
foundational loss function for the fluid segmentation
task and is subsequently referred to asLfluid.

To obtain additional contextual information, three
different anomaly detection methods are investigated.
These three algorithms are (1.) f-AnoGAN [6], an unsu-
pervised generative adversarial network that learns the
healthy data distribution and a fast mapping of new data
to its latent space; (2.) Natural Synthetic Anomalies (NSA)
[7] trained to detect anomalies in a self-supervised man-
ner using synthetic anomalies and Poisson image blend-
ing to create anomalies in healthy images; and (3.) Flu-
idRegNet (FRN) [8], a registration framework specially
designed for retinal fluids and adopted for anomaly de-
tection. By registering healthy images to pathological
ones, areas of large deformations effectively highlight
anomalies.

II.III. Guidance methodologies
Anomaly detection guidance can provide additional con-
textual information to support segmentation perfor-
mance, as demonstrated by these five methodologies.

Indirect anomaly guidance The first methodol-
ogy evaluates the approach of Seeböck et al. [4]. With the
aim of improving the semantic context, anomaly maps
are added to the existing manual annotated labels. This
results in an additional segmentation class for anomaly
pixels. In [4], they extend existing ground truth labels in a
distinct manner without overlaps between fluid segmen-
tation and anomaly segmentation. In contrast, this work
uses the overlapping anomaly map as an extra target map,
while the model predicts an additional channel; which
is learned with a separate binary cross-entropy loss. Re-
sulting in the loss functionLindirect =Lfluid+Lano where
Lfluid indicates the baseline loss function for the original
five classes andLano the additional binary cross-entropy
loss for the spatial context. We will refer to it as Indirect
Anomaly Guidance (IDAG).

Direct anomaly guidance To increase the in-
fluence of anomaly detection on the segmentation task,
the anomaly map is given as a direct input to the Mo-
bileNet. We call this Direct Anomaly Guidance (DAG).
For this purpose, the network is modified by adding an
extra input channel, and the image and the anomaly map
are concatenated in advance. Otherwise, this approach
is trained as described in section II.II.
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Figure 2: Influence of different anomaly detection methods on the segmentation results of MobileNet and AMNet. Significance
to the MobileNet baseline is provided by stars (∗ p < 0.05, ∗ ∗ p < 0.01) using Wilcoxon signed-rank test for DSC results only.

Attention-MobileNet This method introduces
a novel way to focus attention on the MobileNet, called
Attention-MobileNet (AMNet). As shown in Fig. 1 the
MobileNet is modified by Attention Gates (AGs) from
the Attention U-Net [5]. The AGs learn to predict soft
attention maps that are multiplied with the feature maps
provided by the skip connections to suppress unrelated
information and focus on the more relevant information.
In Fig. 1, the blocks and connections that differ from
the original MobileNet are shown in blue. Two AGs are
inserted, which work on different resolutions due to their
position in that architecture – similar to the Attention
U-Net. In addition to the AGs, a further skip connection
is introduced that inserts the initial image at the end of
the network just in front of the last layer block. This ar-
chitecture is trained like the MobileNet and as described
in section II.II using the foundation lossLfluid.

Anomaly-guided Attention-MobileNet
Anomaly-guided AMNet (AnoG-AMNet) combines
the IDAG approach with the application of AMNet.
To support the attention mechanism and achieve a
stronger influence of the anomaly detection guidance,
anomaly maps are used to train the AGs. In this way,
AMNet is used to learn the capability of anomaly
detection. This results in the following loss function
Lguided =Lfluid+LAG1+LAG2, where LAGi

is the MSE
loss of the AG and the scaled anomaly detection map.

Anomaly-Attention-MobileNet The last
proposed methodology, Anomaly-Attention-MobileNet
(AnoAMNet), extends the idea of contextual information
in AGs a step further. It modifies the AMNet by replacing
the AGs with direct input of anomaly maps. This means
that the anomaly map is used in the forward path of the
AMNet and scaled before being used as input on the
corresponding AG position. Like the AMNet, DAG, and
baseline approach, this network is trained using just the
Lfluid loss function.

III. Results and discussion

The segmentation performances are evaluated by the
DSC. For detailed comparison, the DSC is computed for
each class considered separately, depending on the ex-
istence of the class in the B-scan. This results in three
scores for the IRF DSC, SRF DSC, and PED DSC. As a fur-
ther metric, the fluid detection rate (FDR) is used, which
evaluates the detection capabilities at instance level. The
detection rate is defined as the ratio of the number of
fluids that are segmented/detected to the overall num-
ber of fluids. One fluid is thereby counted as such when
all pixels are connected in an eight neighbourhood. Seg-
mentation objects that are not connected are counted as
two separate fluids. A fluid is counted as detected when
at least one pixel of the label overlaps with the prediction.

Fig. 2 summarises the results. The baseline model
and the AMNet serve as a reference and are highlighted
in red and orange. The baseline achieves average scores
of 44.6 (±5.1), 70.1 (±2.4), 51.7 (±2.4), and 69.1 (±5.9), for
IRF DSC, SRF DSC, PED DSC, and FDR, respectively. AM-
Net obtained similar mean scores of 42.7 (±6), 71.5 (±1.4),
and 51.7 (±1.4), for IRF DSC, SRF DSC, PED DSC, as well
as a FDR of 67.3 (±5.9). However, AMNet was observed
to reduce the number of false positives. The highest per-
formance, with an FDR of 75.8 % (±7.5 %), was achieved
by the DAG using the FRN algorithm. This approach im-
proved segmentation across all fluid classes in DSC and
FDR, outperforming all other methods. The improve-
ment is qualitatively shown in Fig. 3, where the base-
line is compared to the DAG methodology using FRN.
The second-best performance was achieved by AnoAM-
Net, which improved the IRF DSC by 3.8 % and PED DSC
by 10.3% over the baseline. Both DAG and AnoAMNet
demonstrated consistent improvements in all metrics. In
general, the guidance approaches (IDAG, AnoG-AMNet),
which are limited to the loss function, performed worse,
failing to surpass the baseline.

Fig. 2 shows the performance of the methodologies
according to the anomaly detection algorithm used. It is
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Figure 3: Comparison of the baseline prediction and the DAG
prediction using FRN results for guidance. The first column (a,
d, g) displays the input image alongside the FRN anomaly map
(for guidance methodologies). The second and third columns
present the labels and their overlays on the input image, re-
spectively. The first row (b, c) shows the baseline predictions,
the second row (e, f) shows the DAG predictions using FRN,
and the third row (h, i) presents the ground truth.

quite noticeable that the performance of the loss-guided
methodologies hardly deviates from the baseline. The
results for NSA are close to each other and to the base-
line, indicating a lower information gain. FRN achieves
widely scattered and higher results, indicating higher in-
formation gain. The same is true for more direct method-
ologies, such as DAG and AnoAMNet, where the anomaly
map is used as input for the segmentation architectures.

However, direct anomaly guidance approaches have
the disadvantage of high overhead due to the need for
anomaly detection maps for prediction. In contrast, in-
direct guidance approaches require anomaly detection
maps only during training. This enables these method-
ologies to be used even without existing anomaly maps.

Typical issues evident in both qualitative and quan-
titative aspects include the misclassification of IRF, as
shown in 3. All approaches struggle to accurately classify
IRF regions. Despite the presence of fluid pathologies
that are visually apparent to humans, these models are
unable to detect them reliably. This limitation may be
attributed to the small amount of training data available,
particularly for the IRF class (39 volumes). However, this
hypothesis requires further investigation in future stud-
ies to confirm and address the underlying causes.

IV. Conclusion
Anomaly detection plays a crucial role in medical image
computing, particularly for tasks involving pathological
image data. This work demonstrates that integrating
anomaly detection guidance can significantly enhance
supervised segmentation of medical images. By evaluat-
ing state-of-the-art anomaly detection algorithms and
developing novel guidance methodologies, we show that

using strong anomaly feature maps improves segmenta-
tion performance. Our findings suggest future research
on contextual information for fluid relations and posi-
tions, highlighting the potential of anomaly detection
not only as a diagnostic aid but also as a complementary
tool to improve segmentation frameworks, paving the
way for more accurate and efficient automated medical
image analysis.
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