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Abstract

Brain-computer interfaces for robotic-assisted rehabilitation based on EEG recordings can play an important role in
the rehabilitation of stroke patients. To effectively classify movement intentions from EEG signals, machine learning
models are needed that can work with noisy and heterogeneous data. This work investigates four neural networks,
namely the MLP, TKAN, EEGNet, and SincEEGNet, in their ability to predict movement intentions in intra- and
cross-subject classification. Additionally, the amount of calibration data for adapting the pre-trained models of the
cross-subject task to data of the target subject was explored. The model performance for intra-subject classification
is highest with the EEGNet, however, SincEEGNet performs best in cross-subject classification. Calibrating the
pre-trained models results in a performance gain with the overall highest accuracy of 88.1 % with SincEEGNet.
Those results motivate to apply such models for EEG classification across subjects to reduce calibration times.

|. Introduction on data from that subject. Alternatively, training data

could be recorded from the target subject, having the

Stroke is a worldwide cause of physical disability, affect-
ing more than 12 million people around the world each
year [1]. To increase their independence after a stroke,
patients often participate in physical therapy where exo-
skeletons can be a supportive tool to enhance the pro-
cess and outcome [2]. Such exoskeletons can be con-
trolled with a brain-computer interface (BCI) by mea-
suring the electrical activity of the brain as EEG signals
and extracting human intentions from them. Indica-
tions for a planned movement can be found by detecting
movement-related cortical potentials (MRCPs) from the
human EEG |[3]. Since EEG signals show high variability
across different subjects, it is challenging to apply classi-
fication models on subjects without training the model

disadvantage of needing long data recording and model
training sessions before the classification model is ap-
plicable. Especially in stroke rehabilitation, long and
tiresome data recording sessions must be avoided to pro-
vide efficient therapy while reducing preparation times
to a minimum. One possible solution to this dilemma
is to apply transfer learning, which offers approaches
to improve cross-subject classification. An overview of
approaches can be found in this review

Machine learning techniques, particularly neural net-
works, have become increasingly popular in the field of
EEG classification due to their ability to learn complex
patterns from high-dimensional and noisy data such
as EEG in an end-to-end architecture [5]. A popular
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model is EEGNet [6], a Convolutional Neural Network
built to better generalize across different prediction tasks
with small amounts of data. The model consists of lay-
ers for temporal and spatial feature extraction inspired
by the filter-bank common spatial pattern (a common
method for feature extraction in signal processing)

as well as separable convolutions. To further enhance
EEGNet, an alternative first convolutional layer inspired
by SincNet (8] was explored [9], allowing adaptable learn-
ing of band-pass filters, implemented by parametrized
sinc functions. The resulting SincEEGNet is beneficial
by having fewer adaptable parameters and by creating
better interpretable temporal filters. Other approaches
include Multilayer Perceptrons (MLPs). As an adaptation
to MLPs, the Kolmogorov-Arnold Network (KAN)

was proposed, replacing the fixed activation functions of
MLPs with learnable parametrized functions, and time-
aware components were included by incorporating Long
Short-Term Memory (LSTM) cells into the KAN structure

, named temporal KAN (TKAN).

In this study, four different models were explored—
MLP, EEGNet, TKAN, and SincEEGNet—regarding their
classification capability to predict movement onsets
from EEG data within and between subjects. Since
recording calibration data from stroke patients takes
time that could otherwise be spent on rehabilitation ex-
ercises, minimizing the amount of needed data would
be beneficial. Therefore, the effect of different amounts
of target data for calibrating the models was explored.
The experiments in this study were conducted on data
from healthy subjects, laying an important foundation
for future studies on data of stroke patients.

The remainder of this paper is organized as follows:
In Section 11, the dataset, EEG pre-processing, model ar-
chitectures, and classification tasks are introduced. The
results are then summarized and discussed in Section I1],
followed by the conclusion of this work in Section

Il. Materials and Methods

The following methods were applied to predict move-
ment onsets of self-initiated movements from recorded
EEG signals, distinguishing between the two classes
movement intention and resting.

The utilized EEG dataset includes data from eight
healthy subjects performing different tasks. In this work,
data of the unilateral reaching task was employed, where
participants had to reach for a button with one arm and
press it with their thumb by self-initiated movements.
Each subject performed three measurement runs with
40 repetitions of the task, resulting in 120 trials in total.
Each movement was preceded by at least 5 s of rest.

Dataset

Il.1l. Train-Test Splits
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Figure 1: Exemplary train-test splits for intra-and cross-subject
classification. For both settings, three models per subject were
built, resulting in 24 trained models. For each model, one of
three runs per subject was used for testing. The validation data
(val) makes up 10 % of the training and validation data.

The data was split into train, test and validation
data as displayed in Figure 1. Leave-one-run-out cross-
validation was performed for the intra- and cross-subject
scenario, however, for cross-subject classification, the
data of the target subject was excluded from training. For
calibrating the models, they are pre-trained equally to
the cross-subject task and then calibrated similarly to
the intra-subject scenario on different amounts of target
data. Of the two runs to be used for calibration and vali-
dation, 10 % was left out for validation and 90 %, 70 %,
50 %, 30 %, and 10 % were each used once for calibration.

IL.111. Pre-Processing

Of the 64 EEG channels, 32 were manually selected, cov-
ering relevant motor areas. Afterward, the EEG data is
split into overlapping windows with a step size of 0.05 s
and a length of 1s. Since the brain potential of move-
ment intention can be detected by MRCPs shortly be-
fore movement onset (at time-point 0s) [3], the windows
[-3.5, -2.5] s, [-3.2, -2.2] s, [-2.9, -1.9] s, [-2.7, -1.7] s,
[-2.5, -1.5] s, and [-2.3, -1.3] s are selected as sam-
ples for the resting class and the windows [-1.1, -0.1] s,
[-1.08, -0.08] s, [-1.06, -0.06] s, [-1.04, -0.04] s, [-1.02,
-0.02] s, and [-1, 0] s as instances for movement inten-
tion. The pre-processing varies for each architecture be-
cause the networks process the data differently. The EEG-
Net and SincEEGNet are designed to extract spectral and
spatial features. Hence, they are trained on windowed
data and for EEGNet a Butterworth band-pass filter of
order two is applied with the cutoff-frequencies 0.3 Hz
and 40 Hz. For MLP and TKAN, the signals were filtered
equally apart from differing cutoff frequencies of 0.3 Hz
and 5Hz. Time-domain features were extracted from
the last 100 ms of the windows. Since TKAN processing
is LSTM-like, it receives all 42 values from this interval.
For MLP, 15 exponentially spaced time-point features are
extracted. Additionally, frequency band powers are ob-
tained channel-wise for each window from the original
unfiltered signals to be combined with the time-domain
features for MLP. The five selected frequency bands are
the delta (0.5-4 Hz), theta (4-8 Hz), alpha (8-13 Hz), beta
(13-30Hz), and gamma (>30 Hz) band.
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I1.1V. Classification Models
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Figure 2: Architectures of MLP, EEGNet, and TKAN model.
Legend of Layers: Dense: output dimension, Activation: acti-
vation type, AvgPool: kernel shape, Dropout: dropout rate.

Visualizations of the EEGNet, MLP, and TKAN model can
be seen in Figure 2. Implementation details and parame-
ter settings of EEGNet can be found the respective publi-
cation [6]. For the current work, an additional normaliza-
tion layer was applied before the first convolution, and
the kernel length of the first convolution was adapted
to 50 samples due to a different EEG sampling rate and
as a trade-off between long computation time and per-
formance. SincEEGNet is built similarly to EEGNet but
with a sinc convolution as the first convolution block
Different to classical convolutions, it only adapts two pa-
rameters, the low cutoff frequency and the bandwidth
of sinc-functions, describing band-pass filters. There-
fore, only parameters of a specified function for signal
filtering are learned instead of a whole convolutional ker-
nel. Additionally, the kernel length of the sinc-functions
was adapted to 63 samples, and it proved beneficial to
set the number of filters for the first three convolution
blocks to 16, 2, and 32, respectively, whereas EEGNet
works better with 8, 2, and 16 filters. The implemen-
tation of the sinc convolution is based on the work of

(implementation used from

).

The hyperparameters for training the MLP and TKAN
are set similar to EEGNet as far as applicable. A minmax
normalization was applied for TKAN to fit the signals to
the interval [0,1], since the architecture itself does not
include a normalization layer. Instead, the minmax nor-
malization was selected after hyperparameter optimiza-
tion. The output dimensions of the two TKAN layers
are set to 100. A TKAN layer has a similar structure to

an LSTM layer, whereby each input is processed by a
linear KAN component which works with parametrized
B-spline functions to learn the activation of the layers.
The implementation of TKAN is based on

I1l. Results and Discussion

The intra- and cross-subject classification performances
are presented in Table 1. The accuracy score was chosen
to evaluate the model performances. For intra-subject
classification, EEGNet achieves the best performance,
followed by SincEEGNet, then MLP and lastly TKAN be-
ing only slightly better than chance level. When classi-
fying EEG signals cross-subject, SincEEGNet results in
the highest accuracy, followed by EEGNet, then MLP and
lastly TKAN, again with a low accuracy. Intra-subject
classification generally leads to a better performance
than training on data of non-target subjects. The dis-
tance between the scores of the two classification set-
tings is most likely due to individual differences in the
EEG data, resulting from varying anatomy and physi-
ology. Even though cross-subject classification results
in lower scores, it allows applying trained models with-
out needing target data for model training, effectively
reducing the preparation time. EEGNets superior perfor-
mance in the intra-subject scenario could be caused by
its effective way of learning spatial and spectral filters.
However, it is outperformed by SincEEGNet when pre-
dicting cross-subject without calibration. This indicates
superior generalization characteristics of sinc-functions
compared to standard convolution kernels. The TKAN
architecture seems to lack the capability of properly de-
tecting movement intention from EEG data, indicating
that convolution-based processing may work better for
EEG classification than sequential processing. Presum-
ably, the LSTM-like structure of TKAN hinders the proper
extraction of features for EEG classification tasks. How-
ever, a more in-depth analysis of the architecture would
be required to support this finding.

The results of testing different amounts of calibration
data are displayed in Table 1. An overall increase in accu-
racy can be observed with more calibration data, as can
be expected. Generally, SincEEGNet shows the highest
performance, with exceptions at 10 and 30 % where it
is outperformed by EEGNet. With 90 % of calibration
data, SincEEGNet achieves the overall highest accuracy
of 88.1 %. The settings when calibrating with an amount
of 90 % equal the intra-subject classification with the
distinction of training on pre-trained models instead of
untrained ones. For the MLP and EEGNet, no perfor-
mance increase can be observed when pre-training the
models before applying the target data. However, for
TKAN and SincEEGNet, considerably higher accuracy
scores are reached. For all models, a trend towards su-
perior results can be observed when using more target
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Table 1: Model performances, measured in % accuracy (median and standard deviation) of the 24 models for intra- and
cross-subject classification. For the cross-subject setting, the results from different amounts of target data are displayed.

intra-subject cross-subject
Model 0% 10 % 30 % 50 % 70 % 90 %
MLP 81.5£8.8 67.0£80 71.7+84 783+£96 79.6+9.6 80.4+9.6 81.0+85
TKAN 64.2 £6.3 62.4+6.0 62.7+6.0 64.6+6.6 66.5+6.7 66.4+6.1 66.6=+6.3
EEGNet 86.8 £7.7 73.0+10.6 80.1+7.9 82.4+9.0 829+9.6 86.5+8.6 86.2+8.0
SincEEGNet 83.0 £6.8 78.5+10.1 75.8+7.6 80.3=+7.7 83.8+7.3 87.0+6.5 88.1+5.3

data. Already with only 10 % of training data from the
target, the score of EEGNet is increased by about 7 %, in-
volving only a fifth of the complete calibration data. This
correlates with a considerable reduction of required data
recording time. However, even with complete avoidance
of calibration and therefore data recording and model
adaptation, the pre-trained SincEEGNet is directly ap-
plicable to a new subject with a median performance of
78.5 %.

IV. Conclusion

Four machine learning models were tested for the predic-
tion of movement intention from EEG data. Intra- and
cross-subject classification settings were applied, and
the calibration of pre-trained models was explored. Over-
all, the EEGNet and SincEEGNet provide the best results
in all tasks, indicating that convolution-based processing
is preferable for EEG classification. More precisely, EEG-
Net results in the best performance for intra-subject clas-
sification, whereas SincEEGNet is the best in most cross-
subject tasks. Even without calibration, SincEEGNet pro-
vides a valuable tool for cross-subject classification of
EEG data. Especially when working with stroke-affected
patients, the usage of efficient cross-subject classifiers
would save precious time. Avoiding data recording ses-
sions for model training would allow an immediate start
with the indispensable rehabilitation exercises.
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