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Abstract

In the dynamic field of software development, deadline-driven projects and the constant demand for innovation
often result in an underestimated burden: cognitive load. Traditional methods, e.g., questionnaires, capture the
subjectively perceived cognitive load in a time- and situation-dependent manner. However, wearable sensors could
provide an objective and continuous evaluation of cognitive load in everyday work situations. Our exploratory
data analysis employs a holistic approach, using recorded multi-modal physiological signals during software
development-typical tasks from four participants who also filled in a NASA TLX questionnaire. Following data
cleaning and a comprehensive analysis, a relation between perceived cognitive load and psychophysiological data

was identified using metrics such as event-related synchronization.

. Introduction

Managing mental resources and the associated cognitive
load is crucial for productivity and solving tasks in today’s
software development. Cognitive load theory defines
cognitive load as the amount of information the working
memory must process at any given time [ 1]. High cogni-
tive load negatively impacts an individual’s productivity
and learning process [ 1]. Cognitive load increases, e.g.,
with daily, mentally demanding activities

Software developers handle various tasks, including
writing code, debugging, code documentation, and writ-
ing emails. Often, cognitive load is measured using ques-
tionnaires. However, questionnaires can interrupt work
routines, and answers are time- and situation-dependent
and subjective. Consequently, some studies assessed the
cognitive load by measuring physiological data and link-
ing them to cognitive load . Using sensors could po-
tentially offer an objective method to assess processing

load and estimate cognitive load as a continuous mea-
surement in real time. Wearables equipped with sensors
that measure physiological signals, such as electroder-
mal activity (EDA), electroencephalography (EEG), and
pupil dilation, can be used to derive cognitive load.

Electrodermal Activity (EDA): EDA measures the in-
fluence of the central and sympathetic nervous system
on sweat glands through changes in skin resistance or
electrical potential [4]. It is an index for directly inves-
tigating stress-related effects on bodily functions and
can describe cognitive load levels [2]. The signal consists
of a tonic and a phasic component [2]. The tonic com-
ponent refers to changes in the skin conductance level
(SCL), which gradually changes over time [2]. The pha-
sic component describes responses in the phasic skin
conduction (SCR) [5]. It is a rapidly changing signal in
response to a stimulus [5]. A high cognitive load induces
a physiological reaction from the sympathetic nervous
system in terms of increased skin conductance
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Electroencephalography (EEG): EEG measures elec-
trical activity in the outer cortical layer (cerebral cor-
tex) of the brain [6]. Our EEG analysis considers four
frequency bands: alpha, beta, theta, and gamma
Changes in these frequency bands can reflect cognitive
load: e.g., a simultaneous increase in theta activity and
alowered alpha activity indicates an elevated cognitive
load

Eye-tracking (EYE): Pupil dilation can serve as an
indicator of cognitive load [ 7]. Larger pupil sizes are asso-
ciated with higher cognitive load [7]. Studies have shown
that pupil size increases with higher cognitive load
The frequency of pupil diameter oscillation can be cap-
tured with the index of pupillary activity (IPA)

Each sensor modality offers distinct insights into
physiological responses to cognitive load, enabling a
more precise and reliable assessment when combined.
Consequently, our study aims to evaluate the cognitive
load of software developers during realistic, day-to-day
tasks by utilizing metrics derived from multi-modal sen-
sor data. Additionally, we strive to identify which physio-
logical metric reflects the subjectively experienced cog-
nitive load.

I.1. Related Work

Physiological multi-modal measurements from software
developers have previously been used to evaluate con-
cepts related to cognitive load, such as task difficulty.
Using data from wearables, such as EEG, eye tracking,
and EDA, and utilizing simple machine learning models
like Naive Bayes, Fritz et al. [2] predicted the perceived
task difficulty based on code comprehension tasks com-
pleted by developers.

In another study, Fritz and Miiller collected
data including EDA, eye tracking, EEG, and heart- and
breathing-related metrics. To analyze this data, they used
machine learning models such as Naive Bayes and deci-
sion trees. They aimed to determine the emotional and
cognitive state, their influence on developers’ produc-
tivity, and the interruptibility of developers. The studies
have not directly detected cognitive load by calculating
metrics from the sensor data but instead used machine
learning

Il. Methods and Materials

Dataset: The dataset used in this analysis consists of four
software developers performing various tasks reflecting
typical daily programming activities to examine cogni-
tive load. All participants were male, right-handed, and
aged between 23 and 29, with an average of 25 years.
They predominantly programmed in Python, SQL, and
C++ and had an average of 5.75 years of programming
experience. The experiment comprised four different

10-minute everyday tasks performed in a randomized
order. The tasks involved writing Java code, debugging,
code documentation, and writing emails. After each task,
the participants completed the NASA task load question-
naire (NASA-TLX) to assess their perceived cognitive
load. The NASA-TLX Score consists of six scales, com-
prising the level of frustration, mental demand, effort,
physical demand, temporal demand, and performance.
The NASA-TLX score was calculated by averaging the
six scales . In addition to the tasks, three baseline
recordings were conducted at the beginning and end of
the study, including participants watching a relaxing fish
tank video, a recording with open eyes, and a recording
with closed eyes. The experiment workflow was deployed
in the JetBrains IDE Intelli] IDEA to simulate a typical
work environment. Participants wore a Shimmer3 GSR+
device to measure EDA and an Emotiv Epoc X (10-20 sys-
tem) to collect EEG. The Tobii Pro Spark eye tracker was
installed below the computer monitor to track the par-
ticipant’s pupil size and gaze. The plugin CognitIDE
was employed, which helps to minimize interruptions,
ensures smooth recordings during the tasks, and enables
a mapping of the physiological activity onto source code.
This plugin, written in Kotlin for JetBrains IDEs, allows
sensor synchronizations and study flow automation

For planned tasks in the workflow, the plugin automati-
cally starts and stops the recording with sensors synchro-
nized.

Data Analysis: The data underwent a series of pre-
processing steps, described in the following sections, to
guarantee high-quality data for subsequent interpreta-
tion.

EEG: First, the sensor’s built-in software removed
power line noise . The EEG device also provides a
quality evaluation signal for the EEG data ranging from
0 to 4, with four representing the highest quality. We
discarded data points with a quality value below four
to maintain the integrity and reliability of the analysis,
as lower-quality data could introduce noise and inac-
curacies into the results (valid data: ~ 92%). Utilizing
the MNE library, the signal was then examined for bad
channels, which were treated using spherical spline inter-
polation [12]. The signal was filtered with a FIR Bandpass
filter with a cutoff frequency [1,30] Hz. The filtered
signal was re-referenced to its mean and inspected for
outliers .After the signal preprocessing, the Event-
related (De)—/Synchronisation (ERDS) for the alpha and
theta band power was calculated to quantify a partici-
pant’s cognitive load per task (Eq. 1)

BBP—-TBP
BBP

ERDS% = (@8]
The BBP is the band power of the baseline recording,
and the TBP is the band power during a task. A negative
ERDS indicates an increase in the band power, whereas a
positive ERDS implies a decrease in the band power
EDA: To clean the EDA signal, a fourth-order Butter-
worth low pass filter with a cutoff frequency of 3 Hz is

(© 2025 Infinite Science Publishing


https://dx.doi.org/10.18416/SCP.2025.1936
https://dx.doi.org/10.18416/SCP.2025.1936

Student Conference Proceedings

Tasks

Figure 1: ERDS in % showing the increase and decrease of
mean theta and alpha frequency bands of the parietal and
frontal brain regions.

1e-9 EDA Metrics with TLX-Score of participant_874

Figure 2: Mean event-related SCR (mESCR) relative to its pre-
and post-baseline for all tasks.
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Figure 3: IPA for the left and right eye and the average of both
eyes for all tasks and the baseline.

applied . The EDA was then decomposed into its
tonic (SCL) and phasic (SCR) components using Neu-
rokit2.

EYE: Blinking or the tracker losing the pupil results in
invalid data that must be removed (valid data: ~ 89%)

. The signal was reviewed for outliers, including dila-
tion speed outliers, trend line deviation outliers, tempo-
rally isolated samples, and invalid pupil sizes . Iden-
tified outliers were removed. Lastly, the baseline correc-
tion was executed by subtracting the mean of the cleaned
baseline period from the signal. The Index of Pupillary
Activity (IPA) was used to quantify the relation between
cognitive load and pupil dilation . The metric was
computed using the modulus maxima to recognize peaks
by applying a discrete mother wavelet transformation.

I1l. Results and Discussion
As visualized in the figures 1, 2 and 3, the results display
indications of cognitive load during the tasks compared
to baseline recordings and its alignment with the mean
NASA-TLX Score for an exemplary participant.

EEG: Figure 1 shows the ERDS, which visualizes the
cognitive load changes in the frontal and parietal lobes

during the different tasks based on the mean theta and al-
pha frequency bands relative to the post-baseline record-
ing. The presented ERDS of the mean alpha band power
is strictly positive, whereas the ERDS of the mean theta
band power is strictly negative. This indicates that the
mean alpha band power desynchronizes and the mean
theta band power synchronizes, reflecting changes in
cognitive load compared to the baseline [ 14]. Typically, as
cognitive load increases, alpha activity decreases, leading
to arise in alpha’s ERDS, while theta activity increases, re-
sulting in a decrease in theta’s ERDS [14]. Higher theta ac-
tivity and a negative ERDS indicate a high cognitive load.
The coding, documentation, and email tasks show the
expected relationship with cognitive load, especially in
theta activity. However, the debugging task corresponds
to the highest NASA-TLX score and points towards the
lowest theta wave activity. A possible reason for this un-
expected result is cognitive overload. The debugging
task may have been too difficult, leading them to give
up, resulting in low measured cognitive load. Addition-
ally, numerous participants indicated a lack of familiarity
with the IDE environment, which heightened the diffi-
culty, as they mainly did not program in Java, and thus
did not know how to use the IDE’s debugger effectively.
The findings express the ERDS is a reliable metric to de-
tect an increased cognitive load relative to a baseline,
however it fails to detect cognitive overload.

EDA: Figure 2 shows the mean event-related SCR (mE-
SCR), which increased during tasks compared to pre-
and post-task baseline recordings. Higher mESCR values
suggest increased cognitive load [2], which are consis-
tent with participants’ NASA-TLX ratings, indicating the
metric’s reliability. The SCR did not always rise with the
NASA-TLX scores, possibly due to signal quality issues.
The Shimmer3 GSR+ electrodes worn around the finger
may have recorded distorted values whilst typing on the
keyboard during the tasks.

EYE: As visualized in Figure 3, the results showed an
expected relation between the IPA of the left eye and the
NASA TLX score. However, the highest NASA TLX score
corresponds to the lowest IPA of the right eye, whereas
the second lowest score (documentation task) resembles
the highest IPA of the right eye. In general, higher IPA
correlates with a higher cognitive load . The differ-
ences in the IPA of the eyes are relatively small for most
tasks, except for the debugging task. Considering the dif-
ferences, the IPA might not be best metric for indicating
the cognitive load. Future research should investigate
the differences in the IPA of the eyes while doing complex
tasks such as debugging. A study [9] discovered that IPA
does not correlate with task difficulty, referring to the fact
that IPA values may not be reliable for complex tasks.

The metrics calculated from sensor data, recorded
and synchronized using CognitIDE, indicated changes
in cognitive load that align with participants’ subjective
perceptions during simulated everyday working tasks.
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IV. Conclusion

In conclusion, this exploratory study analyzed the rela-
tionship between physiological signals and the perceived
cognitive load of software developers using the metrics
IPA, mESCR, and ERDS calculated from the pupil dilation,
EDA and EEG signals. Based on the above analyses, mE-
SCR best reflects the cognitive load. The results indicate
that cognitive load is partially reflected in physiological
data collected from wearables. This suggests the poten-
tial of wearables to enhance cognitive load recognition,
serving as an extension to traditional questionnaires. Val-
idation with a larger sample size and over an extended
period in real-life working conditions is necessary to en-
sure the credibility of the results. In a future work, the re-
lationship between cognitive load and physiological met-
rics will analyzed more closely with a larger sample size
and by utilizing machine learning approaches. This is a
next step towards finding measures to support software
developers during their cognitively demanding working
tasks.
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