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Abstract
This study investigates the integration of computational modeling and machine learning to analyze patient-
ventilator interaction (PVI) in mechanical ventilation. One-compartment, multi-compartment and nonlinear
models were developed to generate synthetic data that account for lung mechanics under various conditions.
Utilizing synthetic data addresses the limitations of real clinical data availability. These datasets were used to train a
residual neural network (ResNet) model for time-series classification which allows to predict PVI events effectively.
The ResNet model that consists of convolutional layers and skip connections which captured complex relationships
between physiological parameters to achieve a test accuracy of 89.27% and a test loss of 0.24. The framework offers
a promising direction for personalized ventilation strategies that aims to enhance patient care in critical respiratory
conditions. This integration makes a significant advancement in the management and optimization of mechanical
ventilation approach using artificial intelligence (AI).

I. Introduction

Monitoring patient-ventilator interaction (PVI) is crucial
for effective mechanical ventilation, particularly in pa-
tients suffering from acute respiratory failure or those
depending on long-term ventilation support. Adequate
ventilation is achieved through synchronization of the
patient’s spontaneous breathing efforts and the mechan-
ical support of the ventilator. This synchronization min-
imizes patient effort and reduces the risk of ventilator-
induced lung injury [1]-[2]. Despite advancements in
understanding PVI, challenges persist in maintaining op-
timal patient-ventilator synchronization. Temporal mis-
match between the patient’s & mechanical ventilator’s
assistance is called patient-ventilator asynchrony, which
is very common on critically ill patients [3]. Identifying
asynchrony typically involves analyzing airway pressure
and flow curves and simultaneously monitoring respira-

tory muscle activity. Modern computational methods,
such as neural networks (NN) and other machine learn-
ing (ML) techniques, have further enhanced the analysis
and optimization of PVI [4]. These approaches leverage
patient-specific data to predict optimal ventilator config-
urations and have demonstrated notable improvements
in accuracy, sensitivity and precision in simulated test
results. The code developed in this paper offers flexi-
bility and precision in simulating scenarios of normal
and impaired lung function. Thus, outputs such as vol-
ume, flow and pressure signals, provide valuable insights
into the impacts of various ventilation parameters [5].
Through the integration of mathematical modeling (MM)
& data-driven approaches, this study aims to enhance
the understanding of ventilator dynamics & offers a ro-
bust framework for analyzing ventilator settings. This
integration of models & artificial intelligence (AI) pro-
vides a promising direction for improving outcomes in
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respiratory care [6], offering the potential to facilitate the
management of mechanically ventilated patients.

II. Material and Methods
MATLAB and Python were used as software tools for
this study. MATLAB was used for modeling the respi-
ratory system and simulating various curves from differ-
ent compartment models. Python was set up for deep
learning with TensorFlow on an NVIDIA A100 GPU (MIG
- 5GB) which was a virtual environment in JupyterLab
provided by Technische Hochschule Lübeck. The respi-
ratory system was represented using three different types
of models: the one-compartment, multi-compartment
and nonlinear-compartment model. Synthetic patient
data were generated using differential equation solvers.
The obtained synthetic data was used as an input for the
ML algorithms. This allows the scaling and controlled
training of the models without considering actual patient
records.

II.I. Modeling the Respiratory System
The basic equations for the circuit diagram of the
different compartment models were based on [5]-
[7]. The equations reflecting one-compartment, multi-
compartment and nonlinear-compartment models were
then prepared and solved accordingly.
The one-compartment model has been designed accord-
ing to system dynamics equation (1) and calculated as
described by Bates et al. [7]:

Pa w =V ∗
1

C
+R ∗ V̇ +Pm u s , (1)

where Pa w is the airway pressure, V is the lung volume,
C is the lung compliance, R is the airway resistance,
V̇ = d V /d t is airflow and Pm u s is the patient’s mus-
cle pressure. Inspiratory pressure (I P ) is represented
as time-varying rectangular pulses, while Pm u s is a sinu-
soidal waveform with exponential decay over respiratory
cycles to simulate muscle effort. Pm u s and Pa w are cal-
culated as time-varying inputs, and V and V̇ are derived
using ordinary differential equation solvers. For the two-
compartment model, the circuit has been designed and
calculated as described by Bates et al. [7]:
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Here, again, V denotes volume, R resistance, and C com-
pliance. The indices 2 and 3 correspond to the right and
left lung respectively. The resistance of the trachea lead-
ing to the lungs is R1. Again, these equations were then

implemented in MATLAB to generate the synthetic data.
For the nonlinear-compartment model, the complete
pressure-volume relationship of the lung, ranging from
residual volume (V ) to total lung capacity, is best char-
acterized by a sigmoidal function, as described in the
equation (4) [7]:

V = a +
b

1+ e −
(Pt p −c )

d

, (4)

where Pt p is transpulmonary pressure, i.e, the pressure
difference between the alveolar pressure and the pleural
pressure and a , b , c & d are adjustable parameters that
define the specific characteristics of the curve. To deter-
mine the compliance C , the derivative of V with respect
to Pt p was computed using the equation (5). The deriva-
tive was expressed in its simplified form after applying
the quotient rule.

C =
d V

d Pt p
=

b e −
(Pt p −c )

d

d
�

1+ e −
(Pt p −c )

d

�2 . (5)

Equation (5) has been implemented in MATLAB to simu-
late the breathing system for nonlinear model.

Figure 1: Schematic diagram of a PVI model

Figure 1 outlines the key parameters used in modeling
the respiratory system, categorized into six components:
Inspiratory Pressure (IP), trigger types (synchronous, de-
layed, auto-trigger, ineffective), lung compliance, airway
resistance, PEEP range, and pressure levels. These pa-
rameters formed the basis for simulating respiratory be-
havior and analyzing physiological variations. The mod-
els produced synthetic V̇ , Pm u s , and V curves that sim-
ulated the interaction between ventilator settings and
respiratory mechanics. Curves for Pa w , Pm u s , V̇ and V
were generated at a sampling rate of 0.1 Hz for 30 sec-
ond patches yielding 300 sample points per simulation.
The data is then saved in CSV format for machine learn-
ing. One- & two-compartment models were solved using
MATLAB’s ODE45 and ODE15i solvers, with the ODE15i
solver specifically used for nonlinear-compartment mod-
els due to its capability to handle implicit equations. The
obtained equation was then implemented in MATLAB
to generate the synthetic data.
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II.II. Integration of synthetic data with
machine learning algorithm

Real clinical data was scarce and subject to strict pri-
vacy regulations requiring extensive ethical approvals
and consent processes. This could be time consuming
making it difficult to gather enough samples for robust
model training. Synthetic data can be produced in abun-
dance to meet up the requirements of comprehensive
datasets that include a variety of edge cases and rare
events. In our study, a residual neural network (ResNet)
architecture was utilized to classify and analyze synthetic
respiratory data. The ResNet architecture, known for ad-
dressing the vanishing gradient problem through resid-
ual connections, was adapted for time-series classifica-
tion to predict PVI events. The dataset, loaded from a CSV
file, included features such as Pa w , Pm u s , V̇ and V with
PVI types as the four class labels (synchronous, delayed,
auto-trigger, ineffective). The model architecture fea-
tured a convolutional neural network (CNN) with ResNet
blocks, employing convolutional layers, max-pooling,
and dropout layers to extract features and mitigate over-
fitting. Training spanned 20 epochs with a batch size
of 32, and validation was conducted on a separate test
set. Performance was evaluated based on test set loss
and accuracy, with predictions compared to true labels
to determine accuracy.

III. Results and Discussion

The results demonstrate the simulation behavior of
the respiratory system of three different modeling
approaches: the one-compartment model, the two-
compartment model, and the nonlinear-compartment
model.

III.I. Simulation of the patient breathing

Figure 2 represents the simulation of one-compartment
model. The simulation captures fundamental respira-
tory mechanics, highlighting a strong correlation be-
tween Pm u s , Pa w , V & V̇ . While effective for basic simu-
lations, the one-compartment model lacks the capacity
to capture regional lung dynamics or nonlinear interac-
tions. Figure 3 shows the two-compartment model. The
simulation provides an enhanced representation of the
respiratory system by introducing differential behavior
between the left and right lung. The distinct lung volume
curves (V2 & V3) and flow rates (V̇ 2 & V̇ 3) illustrate inter-
compartmental interactions, revealing heterogeneity in
lung mechanics. This model adds complexity by account-
ing for variability in compliance and resistance between
compartments, offering a more realistic depiction of res-
piratory dynamics compared to the single-compartment
model. Figure 4 represents the nonlinear-compartment

model. It introduces physiological realism by incorporat-
ing nonlinear resistance and compliance effects. The re-
sulting Pa w , V and V̇ curves exhibit deviations from the
linear patterns observed in the simpler models. These
nonlinear dynamics more closely mimic the behavior of
the respiratory system under realistic conditions, cap-
turing subtleties such as dynamic airway resistance and
non-uniform lung mechanics.
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Figure 2: Simulation results of the one-compartment model
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Figure 3: Simulation results of the two-compartment model
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Figure 4: Simulation results of the nonlinear compartment
model
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III.II. Data integration with neuronal
network

Our customized ResNet model was able to recognize dif-
ferent breathing patterns by classifying the data into spe-
cific breathing triggers. It used a method called a soft-
max function to make these classifications, which is com-
monly used in machine learning for such tasks. As a first
step in this work, only the linear model was used to gen-
erate the training and test data, but the framework can
be easily extended to the other models. Synthetic data
were integrated to evaluate how accurately our model
could identify breathing patterns and detect any abnor-
malities. For training, 2130 datasets were used (426 each
for synchronous, delayed trigger, auto-trigger, and in-
effective trigger). The accuracy was evaluated on 559
test datasets (100 synchronous, 100 delayed trigger, 120
auto-trigger, 120 ineffective trigger). The results were
promising: our model achieved a test loss of 0.24 and
a hit rate of 89.27%. This shows that our approach was
quite effective in predicting different events related to
ventilator settings. Overall, this project demonstrated
how deep learning, especially using ResNet, may signifi-
cantly improve the management of ventilator settings by
accurately predicting various events based on Pm u s , V̇ ,
and V data.

IV. Conclusion

In conclusion, this research successfully demonstrated
the integration of computational modeling and deep
learning techniques to enhance the understanding and
optimization of PVI. By developing and simulating one-
compartment, two-compartment and nonlinear mod-
els, synthetic data were generated that effectively repre-
sented lung mechanics under various conditions. The
use of a ResNet model for time-series classification
proved to be a valuable approach in predicting PVI events
enabling the identification of various respiratory pat-
terns and anomalies. The ResNet model, equipped with
convolutional layers and skip connections, effectively
captured different patterns of patient-ventilator interac-
tion. The framework presented here offers a promising
direction for developing personalized ventilator strate-
gies, ultimately enhancing patient care in critical respira-
tory conditions and paving the way for further advance-
ments in respiratory care using AI.
Despite the promising results, this research has several
limitations. The deep learning models require extensive
labeled data for training, which was difficult to obtain.
The prepared models takes into consideration the gen-
eral synthetic data lacking diverse patient populations
and conditions. Future work should focus on validat-
ing the trained ResNet on real patient data and devel-

oping data-efficient models using transfer learning and
semi-supervised learning to address data limitations. Ad-
vancing explainable AI methods will enhance the inter-
pretability of model predictions. Research should also ex-
plore personalized medicine approaches, tailoring mod-
els to individual patients for more precise treatment rec-
ommendations.
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