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Abstract 

Additive Manufacturing (AM) has led to the development of more complex geometries and organic components which can be 
easily manufactured. This has proven to be a crucial milestone for designers with a radical step change in the thought process 
to fully utilise its potential. As the output geometries and manifolds from part optimization approaches like topology 
optimization (TO) and generative design (GD) are lighter but too complex to be manufactured by conventional manufacturing 
methods. Generative Design provides a possibility to optimize the design for specific AM technology and materials. This paper 
defines the workflow of methodology for the design of an elbow or shoulder rigid link for a serial manipulator. Utilizing GD for 
a light-payload industrial robotic application results are compared with carbon fibre tubing and conventional aluminium 
extrusions which are often used in the design and application of both elbow and shoulder rigid links. It was observed that 
utilising GD provides significant potential benefits for robotics design. For example, light-weighted manipulator structures can 
reduce cost and energy consumption whilst maintaining overall strength clearly demonstrating the potential benefit of this 
approach for industrial robotic design. 
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1. Introduction 
Design approaches for varied manufacturing processes 
have always been distinct. For instance, a very specific 
manufacturing process such as 3-axis milling requires 
thought and consideration in terms of the fabrication 
process and its constraints [1]. Although design 
methods have matured and modernised over time with 
the onset of the digital era and improved Computer 
Aided Design (CAD) tools, the manufacturing 
constraints are the basis for any design space 
boundaries.  

Increasing the performance of an industrial robot often 
requires a more stringent design with high stiffness for 
lighter articulated robots. Manufacturers address this 
requirement by increasing the manipulator link cross-
section to enhance stiffness, which results in mass 
augmentation and hence, increased positional errors 
due to deformation under gravity [2].  Studies specific 
to design of robots [3,4] show topology optimization as  
a valid solution for stiffness maximization with mass 
constraints.  

Recent open-source explorations and research in the 
domain of AM has led to some exemptions from 
previous manufacturing-based design restrictions and 
hence much more complex geometries and organic 
components can be easily manufactured [5]. This has 
proven to be a crucial milestone for designers as 
traditional CAD processes [6], pre-established idea 
fixation [7] constraints the design output from 

‘unknown’ expanse of designs that are otherwise not 
obvious to human imagination and design skills.  

Topology Optimization (TO) [8] and Generative Design 
(GD) [9,10] are the two, computationally expensive but, 
convenient automated design solutions that are 
available to close this gap in design.  TO and GD utilize 
evolutionary algorithms and optimization on various 
target dimensions. The design is optimized using either 
'gradient-based' programming techniques, for example 
the optimality criteria algorithm and the method of 
moving asymptotes, or 'non-gradient-based' such as 
genetic algorithms- solid isotropic material with 
penalization (SIMP) and the evolutionary structural 
optimization (ESO) or the bi-directional evolutionary 
structural optimization (BESO). Structural 
Optimization can be used to resolve size, shape, and 
topology. Here, topology optimization is usually 
referred to as general shape optimization [11]. Most 
techniques usually optimize either topology or both size 
and shape [12].  

Generative Design however addresses the optimization 
problem differently [13] and contrary to Topology 
Optimization no initial design stage is required for the 
optimised solution. The inputs required are geometric 
preserves and obstacles, boundary definitions such as 
loads and constraints, the material to be used for 
manufacturing, and the manufacturing process used. 
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With the use of these variables, a portfolio of a large 
number of compatible design solutions can be identified 
from which the desirable solutions can be chosen and 
exported as a boundary representation (BREP) format 
file for any further appropriate alterations. 

Numerous applications from simple optimized chair [9] 
design to complicated optimized bike [14] and car 
chassis [16] design have been successfully generated 
and fabricated for use.  

This paper illustrates the methodology for GD process 
in general and its potential application in light weight 
manipulator link generation. It serves as a proof of 
concept to replace conventional aluminium based bulky 
extrusions with generatively designed and additively 
manufactured light weight,  low cost and robust, elbow 
and shoulder links for a robot. This paper also examines 
how the immobile and inert links in a robotic 
manipulator are generated with their mechanical 
properties compared against a reinforced carbon fibre 
tube and aluminium extrusion solutions for low 
payload applications. 

2. Material and methods 
Notably the most interesting trait that GD offers is the 
ability to explore the entire available design space both 
efficiently and effectively. Autodesk has been at the 
forefront of generative design development since 2018 
with its Fusion 360 CAD package.  

In subsection 2.1 the Generative Design Process is 
discussed specifically in relation to Fusion 360, 
including the working (algorithm) in general . 
Subsection 2.2 discusses the general methodology for 
setting up and running a GD study highlighting the 
decisive aspects of each step in the process. Subsection 
2.3 contains parameters that were used, the results for 
which are discussed in Section 3. ‘Results’. 

2.1. Working 

An iterative approach is used to generate multiple 
feasible CAD solutions based on the manufacturing 
constraints and product performance requirements. 
Design parameters like material, size, weight, strength, 
manufacturing methods, and cost constraints are 
defined by engineers and the software then uses an AI-
based algorithm to generate and filter the valid designs 
among an array of design options. The software 
explores all the possible permutations of a solution and 
tests, learns, and evolves from each iteration. The 
synthesis of design happens with a combination of a 
convex hull generation followed by topology 
optimization initialization and iterative evolution. 

2.1.1. Gift-Wrapping/ Convex Hull 

A Convex Hull (CH) is a polygon (2-dimensional case, 
Fig. 1) or a polyhedron (3-dimensional case, Fig. 2) or a 
polytope (for higher dimensions) which encapsulates 
all the data points in a set. It is the most reserved 
boundary strictly made with its vertices being some of 
the points in the input set. 

In literature, there are many algorithms available for 
calculating CH for the planar cases for instance Gift 
Wrapping or Jarvis March O(nh)[16], Graham Scan O(n 
log n) [17], Quickhull O(n log n) [18], Divide and 
Conquer O(n log n) [19], Chan’s Algorithm O(n log n) 
[20] etc. For the case of 3 dimensions Divide and 
Conquer, Quickhull and Chan’s algorithm can be 
adopted, latter being the best suited and efficient. 
Quickhull is used for computation of convex hulls in 
higher dimension. Here ‘O’ represents the order of time 
complexity for computation, n is the number of input 
data points (vertices or nodes) and h is the number of 
points on the convex hull. Exactly which algorithm runs 
in the back end of the Fusion 360 GD source code for 
generating this initial wrapping is not yet published by 
Autodesk for open access and research. 

The appropriate CH generation is paramount to the GD 
process as it serves as the most reserved volumetric 
space that is needed for a design solution for preserves’ 
connectivity. Regardless of the algorithm used for CH 
generation, an input geometry is created to be 
structurally optimized by considering all the geometric 
inputs and regions of interest in the CAD, namely 
preserves, obstacles and starting shape. 

a) Preserves: the regions (Fig. 3) that are not to be 
modified and should be present in the outcome as it is. 
Usually, these are the bodies/components in the design 
where the part under optimization interfaces with the 
rest of the assembly. 

b) Obstacles: the region (Fig. 4) where the material is 
disallowed. Usually, as a design requirement for empty 
space or either for accompanying components. 

c) Starting shape: This is not always required as the 
shrink wrapping eliminates the need. However, in 
certain design scenarios where the preserves cannot 
“see” one another because of an obstacle, a starting 

Fig 1. Polygon Convex Hull in 2D data set. 

Fig 2. Polyhedron Convex Hull in 3D data set. 
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shape (Fig. 5) provides for a route for the preserves to 
be connected. The process follows the simple Boolean 
operations defined in (1). 

(𝑃𝑟𝑒𝑠𝑒𝑟𝑣𝑒 𝐸𝑛𝑣𝑒𝑙𝑜𝑝𝑒 +  𝑆𝑡𝑎𝑟𝑡𝑖𝑛𝑔 𝑆ℎ𝑎𝑝𝑒)  −
 𝑂𝑏𝑠𝑡𝑎𝑐𝑙𝑒𝑠 =  𝐷𝑒𝑠𝑖𝑔𝑛 𝑆𝑝𝑎𝑐𝑒 𝐸𝑛𝑣𝑒𝑙𝑜𝑝𝑒   (1) 

2.1.2. Topology Optimization 

The topology optimization initialization iteratively 
creates a lean manifold by carving out volume, from this 
initial Design Space Envelope not supported by the 
loads indicated by Final Element Analysis (FEA) at each 
step. The solver inside Fusion 360 GD is based on linear-
static FEA methods. This means that there is no load 
eccentricity applied. If the part under consideration is 
set up with pure compression or tension, there is a 
likelihood of unrealistic results as buckling is not 
considered. This shortcoming can be overcome by 
defining orthogonal small loads to the primary load in 
pure loading condition. 

Since the core-mechanism is a level-set approach to 
topology synthesis, they are highly sensitive to the 
initial shape’s surface area (either created by the solver 
by Convex hull generation or specified by the user as a 
starting shape) [22,23]. 

2.2. Methodology 

2.2.1.  Pre-requisites 

This is an important step as during the setup, user 
creates the ‘bodies’ which are going to be interfaced 
with the rest of the assembly (mountings) and where 
essentially the loads will be defined for the analysis. 
Either a blank design or a pre-defined model is well 
suited for implementing a GD study. Mounting holes and 
load faces are generated in the ‘Fusion 360 Design’ 
workspace excluding any non-essential/peripheral 
parts like fasteners and pins etc. These parts will 
essentially be the preserve  bodies for the GD process. 

Another crucial factor in design is the obstacle 
geometry which covers the space where the user 
doesn’t want the generative design to allow materials to 
enter. Optionally, Obstacle Offset and  Starting Shape 
can also be defined in further steps. 

For the proposed use case of light weight manipulator 
link design, the preserves were defined as the mounting 
holes for the actuators. An obstacle component was 
used for making a hollow link design for the possible 
passage of pneumatic and electrical pathways. The 
fasteners and the tool access space were also defined as 
an obstacle geometry. Additionally, a starting shape was 
also provided for better control of the output design and 
allow shrink wrapping [Fig 6]. 

 

Fig 6. Study Setup. 

2.2.2. Study Setup 

After switching to the ‘Generative Design’ workspace in 
Fusion 360 the following steps were taken: 

a) The visibility property for all the components in the 
robot assembly including actuators, bearings etc. was 
toggled off. Only visible components were the 
Preserves, Obstacle, and the Starting shape. Turning the 
visibility off for all the components apart from the 
components being used in the GD process as defined 
above helps to simplifying the process and declutter the 
workspace. 

b) Modifications/additions to the obstacle sub-space 
were made for generating path for mounting screws 
and tool access for assembly. Abstracting the model 
from the existing set of parts by making any required 
(minor) edits using the ‘Edit Model’ tool is critical to 
define clearances efficiently as voids in the final design. 

c) The Preserve Geometry, Obstacle Geometry and 
starting shape geometry (optional) were assigned to 
the appropriate components in the design. These are 
the inputs for the initialization of Convex Hull 
generation and further structural optimization occurs 
over this computed volume. ‘Obstacle Offset’ can also be 
defined if needed which can be used to control 
geometric tolerances. 

f) The next step was to assign the ‘Design Conditions’ or 
boundary conditions on the preserves. These are the 

Fig 3. Preserves (green) with the suitable shrink wrap 
envelope (yellow) [21]. 

Fig 4. Obstacle (red) with an invalid shrink wrap envelope 
(yellow) [21].  

Fig 5. Defined starting shape (yellow) [21]. 
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constraints to movement and any loads that the part 
will undergo. Several load cases can be made to 
represent various dynamic scenarios to simulate the 
real use-case. These are critical as each iteration tries to 
optimize the flow of stress due to load on each step of 
material removal or addition. 

In the present use case, the end effector payload was set 
to 200 g (including the end of arm tool weight).Load 
torque was calculated for each joint actuator and 
suitable actuators were procured. The ‘moment’ 
applied in this GD study was 10 Nm., which was 
marginally more than the maximum stall torque rating 
of the actuator selected for the Elbow Joint, i.e., 9.2 N.m. 
The link length was 250 mm. Therefore, a radial load of 
40N was applied to the free end of the link (Fig. 6). 

g) Objective and Limits for the GD were specified in the 
‘Design Criteria’ section. A choice between ‘Minimize 
Mass’ and ‘Maximize Stiffness’ was made at this stage 
and the factor of safety was also defined. This is 
essentially the weighting between mass and stiffness 
for design as mentioned in the Introduction section. 

‘Minimize Mass’ was chosen as the design criteria with 
a Factor of Safety of 2. 

h) Both additive and subtractive methods of 
manufacturing were available as options. AM was 
selected as the choice of method since, it generates 
better unrestricted design options and was also specific 
to the study at hand. 

i) The materials defined for the part decide the part’s 
mechanical and thermal properties. For light-weighting 
constraint, material selection was reserved to polymer-
based AM materials.  A maximum of 10 materials can be 
chosen (as options) for a single study. 

 

Fig  7. Custom material profile for Polyamide (PA)-12. 

A custom PA-12 material profile was created according 
to the material manufacturer specifications and was 
used for the study (Fig. 7) since Selective Laser 
Sintering (SLS) was the preferred and available AM 
method. SLS was chosen as the parts produced have 
homogeneous material properties and the fabrication 
method is free from orientation dependence and hence 
no use of support structures is required. No restrictions 
to orientation and overhang angles of 45° were given as 
input in the corresponding fields for ‘Additive’. 45° of 

overhang angle allows the algorithm to build and 
explore design solutions in the domain of both 
orthogonal axes without any bias. 

j) Post validation, the solution generation commenced. 
Due to computational complexity the solver is based on 
Autodesk cloud-based server for calculation and 
analysis of every iteration. 

 

Fig 8. Array of selected Generative Design outcomes from this 
study. 

2.2.3. Generative Results  

This section discusses the basis of comparing several 
design outcomes (Fig. 8) and selecting the most 
suitable. There are several tools available to determine 
which solutions are worth further investigation.  Fig. 9 
illustrates the data for several converged GD outcomes. 
Global Displacement, Von Mises Stress and Mass values 
were the critical variables for selecting the suitable 
design. Filtering and sorting of the results can also be 
done using several other parameters like cost, factor of 
safety, volume etc. ‘Outcome 10’ was chosen as the 
preferable design as it showcased nominal values 
(Table 1.) for the variables mentioned above when 
compared to other designs.  

Table 1. Data values for Outcome 10. 

Max. Global 
Displacement 

Max. Von 
Mises Stress 

Mass 

3.02 mm 12.59 MPa 26.52 g 

It was then exported as a BRep/T-spline body into the 
base model to inspect the context. Also, some 
modifications were made to this form to remove the 
self-intersecting surfaces and to make the base of the 
form closed and connected. Post GD modification of the 
form made it stiffer with an add-on of 3.27 g of mass. 
Minor modifications can be performed using the ‘Form’ 
tools in the Fusion 360 package to remove any self-
intersecting surfaces, if required.  

A structural analysis was then performed to compare 
Outcome 10 (250 mm length) with the Carbon Fibre 
Reinforced Tubing and standard Aluminium Extrusion 
Profile of dimensions  35 mm * 1.5 mm * 250 mm (ID * 
Wall Thickness * Length) and 40 N of force on the top 
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faces with the bases fixed (Fig 10). Simulated Load 
Torque: 

40 𝑁 ∗  0.25 𝑚 =  10 𝑁. 𝑚         (2) 

For meshing of the components ‘Adaptive Meshing’ 
with the minimum element dimension of 1 mm was 
used for the GD form structure. FEA results for this 
comparison are provided and discussed in the next 
section.  

3. Results and discussion 
Neglegible stress and deformation under given load 
clearly signifies (Fig. 11) that Aluminium and Carbon 
Fibre material in profile extrusion form are suitable but 
is an over specifcation. Using the GD form with PA-12 as 
the material for fabrication validates in the current 
structural loading with the maximum deformation of 
1.27 mm and a maximum stress of 6.27 MPa. Also, a 
significant 92.25% and 85.36% reduction in weight is 
observed in the GD form compared to the Aluminium 
and Carbon Fibre respectively (Table 2). These results 
consolidate the use of Generative Design for producing 
optimally lean but strong parts for robotics applications 
utilsing 3D printed polymers. Higher tolerances can 
also be achieved by inculcating hybrid fabrication into 
the process. 3D printed parts can be drilled/milled or 
modified to appropriate tolerances by  using 
subtractive post-processing techniques. 

 

 
Fig 11. Finite Element Analysis results. (a) Global Deformation (mm); (b) Von Mises Stress. 
(MPa). 

 (a)   (b)  

Fig 10. From left to right- Aluminium (AL 6082-T6); Carbon 
Fibre Reinforced (CF/EPOXYLAM.); GD Outcome 10 (PA-12). 

Fig  9. Data visualization of Generative Design Converged Outcomes. 
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Table 2. Mass values of the 3 designs under comparison. 

Aluminium(AL 
6082-T6) 

Carbon Fibre 
Reinforced 
(CF/EPOXY 

LAM.) 

GD Outcome 10 
(PA-12) 

384.35 g 203.56 g 29.79 g 

4. Conclusion 
This innovative approach to design GD has significant 
potential for robotics as it substantially reduces 
weight(~85-90%), making the whole system lighter 
whilst maintaining key strength properties. Lighter 
robotics will also allow the design of economical 
actuators due to reduced torque requirements for 
identical but lighter manipulator configurations with 
unchanged end effector payloads.  

The future scope of this research will exapnd on the use 
of additional AM materials and methods. Further work 
will also focus on  considering the defects and 
compensation for numerous variables [24] in the 3D 
Printing process, including infill homogeneity and 
anisotropy of the mechanical properties in the additively 
manufactured parts. These intrinsic and unknown 
defects in the additively manufactured components 
make it difficult to model the 3D printing processes and 
therefore include these variables in the simulation 
results.  Therefore, comparison studies to validate the 
simulation results with the physical prototypes of the 
form will also be undertaken. It is anticpiated that these 
studies will clearly demonstrate and validate the 
potential benefit of this approach for industrial robotic 
design and application. 
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