
Proceedings on Automation in Medical Engineering 

Proc AUTOMED, Vol 2, No 1 (2023): Article Ref 734 

www.journals.infinite-science.de/automed/article/view/734 

   

Sensor selection for tidal volume determination 
via regression – proof of methodology 
B. Laufer1*, N. A. Jalal1,2, P. D. Docherty1,3, S. Krueger-Ziolek1, F. Hoeflinger4,  
L. Reindl4, and K. Moeller1,3,4 

1 Institute of Technical Medicine (ITeM), Furtwangen University, Villingen-Schwenningen, Germany 
2 Innovation Center Computer Assisted Surgery (ICCAS), University of Leipzig, Leipzig, Germany 
3 Department of Mechanical Engineering, University of Canterbury, Christchurch, New Zealand 
4 Department of Microsystems Engineering, University of Freiburg, Freiburg, Germany 
* Corresponding author, email: b.laufer@hs-furtwangen.de 

Abstract: Measurement of respiratory volumes based on breath-related upper body movements continues to be a subject of 

interest in science and research. In general, smart garments are becoming more common in medical diagnostics and therapy 

monitoring, and improved, miniaturized and more accurate sensors are opening up new opportunities. A crucial issue in the 

development of smart clothing is how many sensors to use and where to place them in the clothes. Using data from a motion 

capture system, two different regression methods (Lasso and Ridge) were evaluated that can be used to select appropriate 

sensor subsets. The performance of the subsets, obtained by the regression methods, were compared with the best set of sensors 

obtained by analysing all possible subsets. The Lasso method showed clear performance advantages over Ridge regression in 

this field of application, but both methods can be employed as they significantly reduce time and computational effort. 
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I. Introduction 
Spirometry [1] and body plethysmography [2] are gold 

standards in pulmonary diagnosis. Both methods are based 

on airflow measurement through the mouth and nose. For 

decades, scientists and researchers have been working on 

an alternative measurement method to determine tidal 

volumes via breath-induced movement of the upper body 

surface. The potential benefits of an alternative to flow 

measurement have been known for a long time. Recently, 

new sensors and sensor technologies opened up new 

possibilities and new applications. Therefore, smart 

clothing is increasingly used in medical diagnostics and 

therapy monitoring [3]. Regarding the field of pulmonary 

diagnostics, a number of studies have already attempted to 

determine respiratory volume using different types of 

sensors. There were approaches via inertial measurement 

units (IMUs) [4], strain gauges [5], or via optical encoders 

[6]. However, a breakthrough approach has not yet been 

found.  

In the development of smart shirts, minimizing the number 

of sensors is a very important aspect, as it reduces both 

complexity and cost. Based on the data of a motion capture 

system (MoCap) for measuring respiration-induced upper 

body movements, the results of two regression methods for 

sensor selection were compared with the optimal sensor set, 

obtained by analysing all possible combinations. 

II. Methods 
A motion capture system (MoCap) was used in this study 
as an optoelectronic plethysmograph to obtain respiratory 
movements of the upper body. The MoCap (Bonita, 

VICON, Denver, CO) used nine infrared cameras (VICON 
Bonita B10, firmware version 404) to record movements of 
102 reflective motion capture markers, which were 
attached to a tight fit compression shirt (Fig. 1). 

 

Figure 1: Sketch of the MoCap system and compression shirt.  

The MoCap markers were placed evenly distributed in 7 

different heights to the shirt. The VICON Nexus software 

(version 1.8.5.6 1009h, Vicon Motion Systems Ltd.) was 
used to process the MoCap raw data and to transfer them to 
MATLAB (R2021a, The MathWorks, Natick, USA) for 
further numerical analysis. Simultaneously, a spirometer 
(SpiroScout with LFX Software 1.8, Ganshorn Medizin 
Electronic GmbH, Niederlauer, Germany) measured 

respiratory volumes vSpiro as a reference. 

Five lung-healthy subjects (3 men and 2 women) attended 

the study. The subjects’ average weight, age, and height 

were 66.2 ± 4.5 kg, 22.2 ± 2.5 years, and 1.75 ± 0.04 m, 

respectively. Between phases of normal spontaneous 

breathing, the subjects were instructed to perform shallow 

breaths, medium breaths and maximum breaths for about 

one minute.  
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Therefore, according to Laufer et al. [7] the movement of 

each MoCap marker was referred to its main movement 

axis. The resulting position changes of all MoCap markers 

were arranged in matrix form (AL) and a regression analysis 

was performed to solve ALx = vSpiro. 

Based on the MoCap data during the measurement, two 

different regression methods that allow the selection of a 

sensor subset were compared with the optimal sensor 

subset, obtained by analysing all possible combinations. 

But this process is very computationally intensive, and 

therefore alternative methods were required - for larger 

subsets it is usually not feasible to analyse all combinations. 

A subset of 4 of 102 sensors yields to 4.2·106 combinations, 

a subset of 5 of 102 sensors to 83·106 and a subset of 6 of 

102 sensors to 1.3·109 possible combinations. 

One of the regression methods used was Ridge regression 

[8]. Ridge regression solves: 

𝐱𝑜𝑝𝑡 = [𝑥1, … 𝑥𝑛]𝑜𝑝𝑡
𝑇 = argmin

𝐱
(‖𝐀𝐋𝐱 − 𝐯𝑠𝑝𝑖𝑟𝑜‖2 + 𝛼‖𝐱‖2) 

where n is 102, the number of parameters / sensors and αǁxǁ2 

is the Tikhonov regularization term using α as 

regularization factor. 

To reduce the sensor set to k sensors, the sensors were 

selected to which the k highest absolute values of xopt were 

assigned.  

The other regression method used was the least absolute 

shrinkage and selection operator (Lasso) [9], which enabled 

a sparse solution for x, solving: 

𝐱𝑜𝑝𝑡 = [𝑥1, … 𝑥𝑚]𝑜𝑝𝑡
𝑇 = argmin

𝐱
(‖𝐀𝐋𝐱 − 𝐯𝑠𝑝𝑖𝑟𝑜‖2 + 𝜆‖𝐱‖1) 

where m is the number of chosen parameters and λǁxǁ1 the 

penalty term of the regularization with
 
λ as regularization 

factor. 

By a suitable selection of λ, the number of sensors could be 

reduced to k sensors. The Lasso method is robust to 

outliers, provides sparse solutions, and prevents overfitting. 

In particular, the Lasso property of providing sparse 

solutions is advantageous in the context of sensor selection. 

The Ridge regression does not offer sparse solutions, but 

compared to analysing all possible combinations, the time 

and computational cost for the Lasso and the Ridge 

methods are negligible. Thus, these two regression methods 

were compared to the truly best sensor set, obtained by 

analysing all sensor combinations - the one provided the 

lowest mean error was selected.  

Since it is difficult to achieve a robust comparison of both 

methods based on 5 data sets only, a bootstrapping 

resampling procedure was used. From each of the 5 

measurements, 100 random data segments (of random 

length) were selected on which the analysis was performed. 

The bootstrapping method, in contrast, allows a 

considerably more robust and meaningful comparison.  

III. Results and discussion 
Fig. 2 shows the direct comparison between the optimal 

combination, the Lasso technique and the Ridge regression. 

The mean errors of the two regression methods are almost 

the same, but are found to be higher than the mean errors 

of the optimal method. Compared to lasso and optimal 

method, ridge regression has higher peak errors. Therefore, 

the Lasso variant outperformed the Ridge regression. In 

addition, Lasso's tendency to sparse solutions can be used 

to minimize the number of sensors used for smart shirt 

development - thus reducing the cost and complexity of the 

shirt. 

 

Figure 2: Errors of the different approaches, regarding subsets 

of 4 sensors (top) and subsets of 5 sensors (down) 

IV. Conclusions 
Both regression methods show that they are capable of 

defining subsets with low computational and time effort, 

but their performance is below the performance of the 

optimal subset. Lasso is preferable to Ridge regression. 
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