
Proceedings on Automation in Medical Engineering

Proc AUTOMED, Vol 2, No 1 (2023): Article Ref 724

www.journals.infinite-science.de/automed/article/view/724

ASMO: a decentralized and verifiable
interoperability platform in intensive care
F. Berg1*, M. Wiartalla1, M. Hüllmann1, A. Derks1, S. Kowalewski1 and A. Stollenwerk1

1 Informatik 11 - Embedded Software, RWTH Aachen University, Aachen, Germany
* Corresponding author, email: berg@embedded.rwth-aachen.de

Abstract: Interconnected medical devices enable new therapies and automate existing ones. Due to various manufacturers and

interfaces, interoperability needs to be enabled with the help of auxiliary hardware. Since functional safety is indisputably

critical, verifiability is essential, which is often neglected by state-of-the-art medical hardware platforms. We propose the

ASMO hardware platform, which provides various interfaces to enable interoperability and where the workload is distributed

such that the complexity of each unit can be reduced, while still providing enough capabilities for embedded machine learning.

By using microcontrollers running an embedded real-time operating system, the verifiability can be further increased. The

intrinsically created distributed architecture additionally allows for flexible rearrangement and efficient extension if needed.

© Copyright 2023

This is an Open Access article distributed under the terms of the Creative Commons Attribution License CC-BY 4.0., which permits unrestricted

use, distribution, and reproduction in any medium, provided the original work is properly cited.

I. Introduction
Interconnected medical devices will be essential to enable

new therapies and improve already existing ones.

Following this approach, we identified two challenges:

Interoperability and Verifiability. Due to various

manufacturers and interfaces, direct interoperability of

medical devices is not always guaranteed. Addressing the

safety of the interconnected medical application,

verifiability is essential. It depends, among other aspects,

on the complexity of the system, which is increasing with

the interconnection of medical devices. In intensive

medical care, patients are in a critical state but not always

under direct monitoring of the staff, such that malfunctions

must be prevented under any circumstances. Using e.g. a

Raspberry Pi to enable interoperability is limited in terms

of available interfaces and verifying a Linux operating

system (OS) is difficult due to e.g. pre-built libraries or the

high complexity and memory model of the Linux kernel

[1].

In this work, we propose a decentralized and modular

platform, which we termed ASMO hardware platform.

Each medical device is attached to an individual

microcontroller board. To enable the interoperability, the

boards offer interfaces for various communication

principles. The hardware platform design also considers

verifiability. Using a microcontroller supported by

embedded real-time operating systems (RTOS), which only

contain a small code size and are solely based on open-

source libraries, allows the verification of the entire used

software system. Furthermore, reducing the complexity of

the system will be beneficial for the verification of the used

algorithms. We distribute the tasks and workload onto

multiple smaller units. This enables the plain alteration of

the created cyber medical system by design. Each unit will

have a comparable lower complexity without reducing the

overall processing capabilities of the whole system.

II. Related Work
There are already commercially available hardware

platforms to enable interoperability, like Capsule from

Philips [2] or SCALEXIO by dSPACE [3]. Using Capsule,

microcontroller boards are attached to medical devices to

read measurements. However, the system cannot close a

feedback loop to control devices. SCALEXIO provides the

LabBox, which also fulfills various input/output (IO)

requirements and enables a feedback loop. The LabBox

offers a modular design by providing board slots for

different functionalities, like analog-digital (AD) / digital-

analog (DA) converters, Controller Area Network (CAN),

Ethernet, Serial Peripheral Interface (SPI), etc.

Nevertheless, due to the closed design, it is not possible to

easily adjust the Box to fulfill custom interface needs.

However, there are also open-source solutions like

OpenICE [4], where so-called dongles (Raspberry Pi’s) are

attached to the medical devices. The dongles itself are

interconnected via Ethernet. One restriction is the limited

flexibility regarding the interfaces due to the prebuild

design of the Raspberry Pi’s. Further, they are operated

with a Linux OS, which complicates the verification

compared to an embedded RTOS as stated earlier. This also

applies to the platform developed by the Technical

University of Munich [5] and the SyncBox [6], where one

main unit, based on a Linux OS, is used to connect to the

medical devices. In addition, those centralized setups

further decrease the verifiability due to the increased

complexity of the code of the main unit, handling all tasks.

Moreover, adding new devices is more difficult since the

main unit will eventually run out of resources.

III. ASMO Hardware Platform
With the sketched challenges and the limitations in mind,

we developed the ASMO hardware platform (derived from

Greek for safe translation), which can be used during the

mailto:author@example.edu

AUTOMED 2023

development stage, but also forms a basis for possible

subsequent clinical use. A resulting ASMO board is a

microcontroller board with various additional peripherals,

which is directly attached to the medical device. The layout

of such a board is presented in Fig. 1 (the schematics are

available in [11]). To enable the use in various

environments, it can be flexibly powered with 5-12V. For

fast development, there is a Joint Test Action Group

(JTAG) interface for debugging, a rotary button for ingoing

and a display for outgoing information, as well as an SD

card slot to store data persistently. To be able to run

embedded RTOSs like FreeRTOS [7] or ChibiOS [8], we

chose the STM32 F767ZI [9] microcontroller unit (MCU),

which is supported with its ARM Cortex-M7 32-bit RISC

core. This MCU offers enough computational power for

embedded machine learning with a focus on energy

efficiency, data security and low latency [10].

Figure 1: An ASMO board with various interfaces to enable

interoperability and CAN / Ethernet for interconnectivity.

Various interfaces can be placed on the ASMO board to

enable interoperability. For instance, there is an RS-232

and a USB interface. Moreover, there is an additional

external AD/DA converter supporting 5V. Furthermore,

enabling custom communication protocols is possible by

simply mapping general-purpose IOs, SPI pins or AD/DA

channels to a pin header. The general ASMO board is

useful in the development stage, while specialized ASMO

boards, reduced to essential interfaces can be designed for

productive operation. The boards can be interconnected via

CAN or Ethernet. For Ethernet, we use message

prioritization via the IEEE 802.1p standard. Modularity is

guaranteed, thanks to the abstraction layers provided by the

embedded RTOSs, which e.g. enable an easy upgrade to a

more powerful microcontroller, as we already proved in the

past, when upgrading from an AT91SAM7 MCU.

Modularity is also important regarding the hardware setup.

In our decentralized system, the devices are connected to

individual ASMO boards, which are interconnected via the

dedicated communication interface. This setup reduces the

complexity of code that needs to be executed on a single

board, since tasks are distributed to multiple ASMO boards

without reducing the overall processing power. Thus, code

modularity is already enforced by this decentralized

hardware setup. Thanks to the reduced complexity of each

unit and only having a small code size due to the use of an

embedded RTOS, we were able to apply various formal

methods using Polyspace by the MathWorks.

We connected the ASMO platform to different devices and

peripherals. RS-232 was useful to connect, among other

devices, to a Datex-Ohmeda AS/3 patient monitor, a

Siemens Servo 300 ventilator, a TERUMO CDI 500 blood

parameter monitoring system, a Reglo ICC roller pump

from Ismatec and a SonoTT flow sensor from em-tec. Via

Ethernet, it was possible to communicate with a MX500

patient monitor from Philips. Ethernet and RS232 are

standardized interfaces, which are widely available.

However, more custom solutions were necessary, for

instance to connect to a Transonic HT100 flowmeter or a

ESCON 50/5 engine control unit, which in turn was used to

control a rotary blood pump. Both only offer AD/DA

channels and custom pins for the communication. Thus, we

designed pin headers, which can be directly placed on the

ASMO board and then wired to the associated device.

IV. Conclusion
In this work, we proposed the ASMO hardware platform,

which was developed considering the limitations of the

related work, like customizability and verifiability. It

enables interoperability by offering various interfaces and

a standardized communication channel to interconnect the

ASMO boards. The board layout is publicly available and

can easily be adapted. To enable verifiability, which is

essential for the functional safety of medical devices in

intensive care, we proposed a decentralized setup with the

workload distributed to multiple boards and thus reducing

the complexity of each unit and allowing for efficient

extension of the whole setup. Further, we emphasized the

importance of running an embedded RTOS with a small

code size and open-source libraries to ensure the

verifiability of subsequently developed medical devices.

AUTHOR’S STATEMENT
Conflict of interest: Authors state no conflict of interest.

REFERENCES
[1] D. Bristot de Oliveira, Automata-based Formal Analysis and

Verification of the Real-Time Linux Kernel, 2020. doi:

10.13140/RG.2.2.30777.39523.

[2] Capsule, Capsule Connectivity Management. Capsule.

https://capsuletech.com/connectivity-management/ (accessed Nov.

29, 2022).

[3] dSPACE GmbH, dSPACE MAGAZINE, vol. 2, 2017.

[4] R. Ivanov, H. Nguyen, J. Weimer, O. Sokolsky, and I. Lee,

OpenICE-lite: Towards a Connectivity Platform for the Internet of

Medical Things, in 2018 IEEE 21st International Symposium on

Real-Time Distributed Computing (ISORC), May 2018, pp. 103–

106. doi: 10.1109/ISORC.2018.00022.

[5] A. M. Garcia, M. R. Huizar, B. Baumgartner, U. Schreiber, and A.

Knoll, Embedded platform for automation of medical devices, in

2011 Computing in Cardiology, Sep. 2011, pp. 829–832.

[6] F. Aytac Durmaz, Altay Brusan, and Cengizhan Ozturk, Unified

Open Hardware Platform for Digital X-Ray Devices; its Conceptual

Model and First Implementation, IEEE J Transl Eng Health Med,

vol. 8, p. 1800311, Jun. 2020, doi: 10.1109/JTEHM.2020.3000011.

[7] FreeRTOS, FreeRTOS - Market leading RTOS for embedded

systems. https://www.freertos.org (accessed Jan. 30, 2023).

[8] G. Di Sirio, ChibiOS free embedded RTOS - ChibiOS Homepage,

2022. https://chibios.org (accessed Jan. 23, 2022).

[9] STMicroelectronics, STM32F767ZI - High-performance and DSP

with FPU, Arm Cortex-M7 MCU,

https://www.st.com/en/microcontrollers-

microprocessors/stm32f767zi.html (accessed Nov. 29, 2022).

[10] T. Ajani, A. Imoize, and Prof. A. Atayero, An Overview of Machine

Learning within Embedded and Mobile Devices-Optimizations and

Applications, Sensors, vol. 21, pp. 1–44, Jun. 2021, doi:

10.3390/s21134412.

[11] A. Stollenwerk, A. Derks, ASMO: a decentralized and verifiable

interoperability platform in intensive care, 2023.

https://doi.org/10.18154/RWTH-2023-00139

