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Abstract: Rocking beds that provide vestibular stimulation may be a promising alternative to conventional pharmaceutical 

treatments that show many side-effects. Past studies have demonstrated that the effectiveness of the vestibular stimulation is 

influenced by the selected rocking acceleration. Moreover, the movement must be smooth and comfortable to avoid disturbing 

the user’s sleep. Previously, the tuning of the control parameters was done manually, which was time-consuming and did not 

guarantee an optimal movement of the bed. In this paper we show an efficient and effective way to automatically tune the 

control parameters of the bed using Gaussian processes while achieving the desired acceleration trajectory and providing a 

comfortable movement for the user. 
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I. Introduction 
Vestibular stimulation (VS) is known to affect autonomic 

body functions such as respiration, heart rate, and blood 

pressure. Moreover, VS induced by a rocking bed has been 

shown to improve sleep architecture and sleep 

consolidation, shorten sleep onset time, and generate 

deeper sleep [1-5]. However, due to the complexity of 

previous rocking beds, rocking was only applied in lab 

settings for a few nights only. The Somnomat Casa 

(developed at the Sensory-Motor Systems Lab, ETH 

Zurich, Switzerland, Figure 1) is a rocking bed for use in 

private home settings that provides translational vestibular 

stimulation in longitudinal direction. The amplitude 𝐴 of 

the sinusoidal movement is fixed to 10 cm and the 

frequencies 𝑓 can be varied between 0.04 Hz and 0.4 Hz, 

which corresponds to accelerations 𝑎 between 0.006 m/s² 

and 0.63 m/s² according to the relationship 𝑎 = (2𝜋𝑓)2𝐴. 

Past studies have shown that frequencies in the range of 

0.25 Hz (0.25 m/s²) and 0.3 Hz (0.36 m/s²) provided largest 

sleep-related benefits [6].  

To achieve the desired accelerations on the Somnomat 

Casa, a feedforward PI velocity controller is used. 

Moreover, the controller needs to be tuned to provide a 

smooth and jerk-free movement to avoid disturbing the 

comfort of the user. Previously, the tuning of the PI and 

feedforward gains was done manually using known 

techniques such as Ziegler-Nichols. However, this process 

is very time-consuming, can only be used to optimize the 

control variable, and does not guarantee optimality as a 

large state space of possible gains is never explored. In this 

paper we introduce a practical, efficient and effective 

method for automatically adjusting the PI gains of a 

velocity controller for a robotic bed using Gaussian 

processes and an arbitrary optimization variable. 

 

Figure 1: The Somnomat Casa applies translational vestibular 

stimulation in longitudinal direction. The attached handle has an 

integrated accelerometer to detect movement on the bed. 

II. Material and methods 
Autotuning is a technique in control systems to optimize 

the performance of a system by automatically adjusting its 

control parameters. Gaussian processes (GP) are an 

example of stochastic processes that can be used to 

automatically refine the control parameters θ of a controller 

based on prior evaluations, current experimental data, and 

a global control objective [7]. From the desired trajectory 

of the bed at time 𝑡, we can formulate analytically the target 

motor velocity 𝜔𝑑𝑒𝑠 which is tracked by the PI controller 

through 𝑢(𝑡): 

𝑢(𝑡) = 𝑘𝑃(𝜔𝑑𝑒𝑠(𝑡) − 𝜔(𝑡)) + 𝑘𝐼 ∫ 𝜔𝑑𝑒𝑠(𝜏) − 𝜔(𝜏)
𝑡

0

𝑑𝜏 

The acceleration perceived by the user on the bed is 

optimized through θ ≔ [𝑘𝑃, 𝑘𝐼] for accurate tracking of the 

target acceleration. To achieve this, we utilize the 

acceleration data from the accelerometer located in the 

handlebar of the bed (c.f. Figure 1 and Figure 2) and 

calculate a modified mean squared error 𝑒(𝜃) between the 

desired and actual acceleration to assess the quality of the 

controller. 

Accelerometer mounted inside the handlebar 
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𝑒(𝜃) ∶= 𝑓√∫ (𝑎𝑚𝑒𝑎𝑠(𝜏, 𝜃) − 𝑎𝑡𝑎𝑟𝑔𝑒𝑡(𝜏))
2𝑇

0

𝑑𝜏 

where 𝑓 is the sampling rate of the accelerometer, 

𝑎𝑚𝑒𝑎𝑠(𝑡, 𝜃) = 𝑎(𝑡, 𝜃) + 𝑣, 𝑣~𝒩(0, 𝜎2), 𝑇 the length of 

the experiment, and 𝜎2 the variance in the measurements. 

 

Figure 2: Black shows the desired- and green the actual noisy 

accelerometer readings. The variance 𝜎2 reflects the noise of the 

accelerometer. 

We discretize the search space logarithmically using 𝑘𝑃 =
10exp𝑃 and  𝑘𝐼 = 10exp𝐼 where exp𝑃× exp𝐼 ∈ 𝐸𝑃 × 𝐸𝐼 ∶=

{0, 𝑠𝑃 , 2𝑠𝑝, … , 𝑀𝑃} × {0, 𝑠𝐼 , 2𝑠𝐼 , … , 𝑀𝐼}, 𝑠𝑃 and  𝑠𝐼 denote 

the stepsizes for the exponentials, and 𝑀𝑃 and 𝑀𝐼 the 

maximum exponentials that cover the parameter space. As 

the evaluation of all parameters is costly, we implement the 

dynamics of the bed in simulation and compute the optimal 

solution 𝜃∗ ≔ argminθ 𝑒(𝜃) ∀𝜃 obtained from simulation. 

This allows to then compare the computational complexity 

of a random grid search to the proposed Gaussian 

autotuning process by defining a set of parameters 𝜽𝝐 ≔
{𝜃 | |e(θ∗) − e(θ)| < ϵ} that contain parameters of 𝜖-

sufficient quality. 

III. Results and discussion 
The simulation of the dense parameter space yields an 

optimal 𝜃∗ = [105.52, 105.76] (Figure 3).  

 

Figure 3: The entire parameter space is discretized and 

evaluated. The values for 𝑘𝑃 and 𝑘𝐼 are chosen logarithmically. 

When we compare the average number of iterations needed 

in 100 runs to obtain 𝜖-optimality of the parameters for 

varying grid densities, we observe a quadratic growth for 

the random search but a constant behavior for the Gaussian 

process. This demonstrates that excellent controller 

parameters �̂� ∈ 𝜽𝝐 can be found using the Gaussian process 

in constant time, independent of the size of the parameter 

space. For the random search through the parameter space, 

we observe a quadratic computational complexity, Fig. 4. 

 

Figure 4: The computational complexity rises quadratically with 

the size of the search space for the random search but remains 

constant for the Gaussian process. 

Using the same approach as in the simulation, we tune the 

control parameters on the bed using the Gaussian process. 

After less than one hour of automated tuning, we have an 

𝜖-optimal error metric. However, one issue that we 

observed after tuning the bed was an increase in noise from 

the motor. Although the motion is smoother than using the 

manual tuning process from before, the motor is now louder 

which may pose issues in some sleep-related applications. 

IV. Conclusions 
In this paper we have demonstrated how Gaussian processes 
can be used to automatically tune controllers of robotic beds 
using any desired metric in constant time. In particular, we 
could demonstrate that the dynamic simulation of the 
Somnomat Casa is well transferable to the real setup and the 
Gaussian process led to a more comfortable movement of 
the bed compared to the previous manual tuning. Future 
work should include the noise emission of the motor as part 
of the optimization variable. 
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