
Proceedings on Automation in Medical Engineering 

Proc AUTOMED, Vol 2, No 1 (2023): Article Ref 718 

www.journals.infinite-science.de/automed/article/view/718 

   

On the impact of feature reduction on leave-
one-subject-out cross-validation 
M. P. Pauli 1* and M. Golz1 

1 Department of Computer Science, University of Applied Sciences, Schmalkalden, Germany 
* Corresponding author, email: mp.pauli@hs-sm.de 

Abstract: The high inter-individual variability of the electroencephalogram (EEG) is investigated in this contribution using 

leave-one-subject-out cross-validation (LOSO CV). The question of whether feature reduction can significantly increase the 

generalization ability of LOSO CV is addressed or whether feature reduction causes too high loss of relevant features, thus 

worsening the results. EEG recordings from three driving simulation studies are analyzed, in which microsleep (MS) and 

sustained attention (SA) were observed in 66 young drivers, some with very high fatigue. The gradient boosting machine 

LightGBM, was used as a classifier for discriminating MS and SA. The results show that the mean classification accuracies at 

validation sets have been found to be 90.8±0.8% for the standard CV and 86.4± 11.0% for the LOSO-CV. Through three 

different feature reduction criteria, a total of 57 different reductions were performed with different thresholds, but there were 

no significant improvements in the mean LOSO-CV accuracy. If the reduction was chosen too high, i.e. more than 96% of the 

features were not processed, then significant reductions of the mean classification accuracies down to 79.1% were obtained. 
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I. Introduction 
Due to the high inter-individual variability of many observ-

able variables in life sciences, it is of great importance in 

the case of machine learning analyses that leave-one-sub-

ject-out cross-validation (LOSO CV) is also investigated 

instead of standard cross-validation. This will determine 

the impact of each individual's data on the model fit. The 

reason is that LOSO CV keeps all of an individual's data 

completely out of the training process in order to determine, 

in the validation step, how accurately a model adapted on 

all other individuals' data works for that individual. This is 

essential for statistical analyses, because training and vali-

dation sets must be independent of each other. A data leak-

age [1] in the training process must be avoided. LOSO-CV 

avoids the so-called group leakage. On a larger dataset, we 

demonstrate that for detection of microsleep in EEG, the 

LOSO-CV leads to lower mean classification accuracies 

with significantly increased variability compared to the 

standard CV [2]. Thus, the optimistic bias of the standard 

CV must be considered critically. 

II. Material 
EEG recordings from three driving simulation studies with 

a total of 66 participants were included in the data analysis. 

EEG was recorded in each of the Fp1, Fp2, C3, C4, O1, and 

O2 channels; Cz served as the reference electrode. Eye 

movements were recorded using vertical and horizontal 

EOG; however, these are excluded from the analysis be-

cause they were needed for the independent expert evalua-

tion of the two behavioral states of microsleep (MS) and 

sustained attention (SA). Video recordings of the eye re-

gion, head-shoulder region, and driving scene were also 

used for the expert evaluation. 

Three important factors influencing fatigue were set high: 

(1) the time since sleep was at least 14 h; (2) the study pe-

riod covered the circadian trough between 4 and 6 am; and 

(3) the accumulated time on task was relatively high, grea-

ter than or equal to 280 min [2]. These three factors, and 

especially the monotonicity experience in the driving sim-

ulator, resulted in high to extreme fatigue and consequently 

a high number of MS, which is important because sample 

size is crucial for approximately correct learnability [3]. 

III. Methods 
The modified periodogram was estimated directly from 4-

second EEG segments after trend elimination and Ham-

ming tapering, and then the LogPSD was calculated in nar-

row 1 Hz spectral bands in the range from 0 to 40 Hz [4]. 

These 40 variables for each of the above 6 channels formed 

the 6 ∙ 40 = 240 components of the feature vectors, which 

in turn are the input variables of machine learning.  

Machine learning was performed using the gradient boost-

ing method LightGBM, a comprehensive framework avail-

able for download from Microsoft Research Inc [5]. In par-

ticular, it was trimmed for efficiency so that the extensive 

LOSO computations could be performed in acceptable time 

using PC grid computing. LightGBM has extensive func-

tionalities to parameterize and configure it for various use 

cases. Gradient boosting belongs to ensemble methods 

where many weak learning algorithms are trained sequen-

tially and then their hypotheses are weighted and fused into 

an overall hypothesis. As weak learning algorithms, deci-

sion trees with the Gini impurity criterion were used here 

to automatically find the decision thresholds. 

As standard cross-validation (CV) method, the K-fold CV 

or the RRSS CV (repeated random subsampling) is usually 

used. Since the latter allows a higher number of repeated 
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training runs, it leads to statistically more reliably estimable 

results. With RRSS CV, in step (1) the data index is ran-

domly permuted so that in training the data are used in ran-

domized order. In step (2), with a quantity ratio of, e.g. 8:2 

or 9:1, the data set is split into training and validation sets. 

During the following step (3), the LightGBM training is 

performed, for which only the training set is used. In step 

(4), each element of the training set is processed in the clas-

sifier recall (LightGBM recall) and counted how many true 

positive and true negative classifications occur with respect 

to the size of the set to finally obtain the training accuracy 

𝑎𝑇. The same calculations are performed in step (5) for the 

elements of the validation set without adapting LightGBM 

to obtain the validation accuracy 𝑎𝑉. All steps are repeated 

𝑀 times, so that finally 𝑀 different training and 𝑀 different 

test accuracies are available. 𝑀 can be chosen freely and is 

usually between 10 and 100; here 𝑀 = 25 was chosen. In 

step (6) the arithmetic mean and the standard deviation are 

estimated over all 𝑀 values. 

In LOSO-CV, step (2) is executed first and the data of one 

individual is declared as validation set and the 𝑃-1 remain-

ing data is declared as training set (𝑃 = number of individ-

uals). Then, step (1) of permuting the data indices of the 

training set is performed. This is followed by steps (3) to 

(5). These five steps are repeated 𝑃 times, so that finally 𝑃 

different training and 𝑃 different validation accuracies are 

available. Finally, step (6) is performed as above, leading 

to the mean accuracies 𝑎𝑇̅̅ ̅, 𝑎𝑉̅̅ ̅ for training and validation 

sets, respectively. The former can be used to estimate the 

adaptivity of the classifier for the given training sets, which 

is usually very high for LightGBM; 𝑎𝑇̅̅ ̅ indicates whether 

the learning processes have been successful and whether 

the predefined configuration settings are successful. How-

ever, the real importance comes to 𝑎𝑉̅̅ ̅, since it can be used 

to estimate the generalization ability, i.e., how successfully 

LightGBM can be applied to data of future individuals.  

Feature reduction was performed using (a) the split crite-

rion, i.e. the number of splits on a feature. If this number 

was below a threshold, the feature was considered irrele-

vant and eliminated. Alternatively, (b) the gain criterion, 

i.e., the contribution of the feature to the classification ac-

curacy, was used. As criterion (c), the conjunctive combi-

nation of criteria (a) and (b) was used. As threshold values, 

related to the maximum of the criterion among all features, 

the median and mean were used and the relative values: 

0.1%, 0.25%, 0.5%, 0.75%, 1.0%, 2.5%, 5%, 10%, 10.5%, 
11%, 12%, 13%, 14%, 15%, 20%. 

III. Results and discussion 
The mean classification accuracy on validation sets was 
𝑎𝑉̅̅ ̅ = 90.8 ± 0.8% in case of standard CV (RRSS) (Fig.1, 
red, ID =0). In case of LOSO-CV, it was 86.4 ± 11.0% 
(Fig.2,ID =1). The significantly higher standard devia-
tion is caused by a large number of individuals that are 
not sufficiently accurately represented by the data set 
of the other 𝑃 − 1 individuals. For three individuals in 
which particularly low accuracies were achieved, the 
causes were poor signal quality [2]. The hypothesis that 
selective feature reduction would increase the robust-
ness of the LightGBM models could not be confirmed. 

The results were sorted in Fig. 1 such that as the index 
increased, feature reduction was strengthened and the 
number of features 𝑛𝐹 decreased. If feature reduction 
resulted in equally large 𝑛𝐹 , results were nearly the 
same; so for clarity, they were not included in Fig.1. It 
can be seen that for almost all reductions there is no sig-
nificant change in the mean accuracies 𝑎𝑉̅̅ ̅ (Fig.1, 
ID=2,3,...,20). Only for drastic reductions, where more 
than 96% of the features were eliminated (Fig.1, 
ID=21-23), there were significant changes, but lower 
accuracies 𝑎𝑉̅̅ ̅. Increased 𝑎𝑉̅̅ ̅ are only slightly indicated 
when about 68% to 75% of the features were elimi-
nated (Fig.1, ID=11-15). Here, the standard deviation 
was also slightly reduced. 

 

Figure 1: Mean and standard deviations of the mean validation 

accuracy 𝑎𝑉̅̅ ̅ (dots, error bars) versus identification index ID of 

feature reduction. Results were ordered such that the number of 

features 𝑛𝐹 (gray bars) decreases strictly monotonically with ID. 

The RRSS-CV reference (red, ID=0) and the LOSO-CV refer-

ence (blue, ID=1) were performed without feature reduction 

(nF=240). The LOSO-CV results 𝑎𝑉̅̅ ̅ with feature reductions 

(blue, ID=2-23) are similar to 𝑎𝑉̅̅ ̅ of the reference (ID=1). 

IV. Conclusions 
Feature reduction has the potential but no guarantee to gen-
erate more robust and generalizable hypotheses. Using a rel-
atively large data set we demonstrated that high dimension-
ality is not only a curse, but also a blessing.  
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